875 resultados para Image acquisition and representation
Resumo:
Based on in vitro experiments, Bos indicus embryos were more resistant to heat stress (HS) than Bos taurus embryos. To increase knowledge regarding differences between Bos indicus and Bos taurus in resistance to HS, the primary objective of this study was to determine if tolerance to HS is due to the breed, origin of the oocyte, sperm, or both. Additionally, the influence of the interval between ovary acquisition (in the abattoir) and oocyte aspiration in the laboratory, on early embryo development was ascertained. Oocytes were collected from Nelore and Holstein cows in an abattoir; 4.0 or 6.5 h later, oocytes were aspired in the laboratory, and then matured and fertilized using semen from Nelore (N), Gir (GIR), or Holstein (H) bulls. Ninety-six h post insemination (hpi), embryos with >= 16 cells were divided in two groups: control and HS. In the control group, embryos were cultured at 39 degrees C, whereas in the HS group, embryos were subjected to 41 degrees C for 12 h, and then returned to 39 degrees C. Rates of cleavage, and formation of morula and blastocysts were higher (P < 0.05) for oocytes aspirated at 4.0 versus 6.5 h after ovaries were acquired. Heat stress decreased rates of blastocyst formation for all breeds (N X N; H x H; and H X GIR) and in both time intervals (4.0 and 6.5 h). However, N X N had higher cleavage rate (P < 0.05) in both time intervals when compared with H X H and H X GIR. In addition, Nelore oocytes fertilized with Nelore semen (N X N) had higher blastocyst yields (P < 0.05) in the control and HS group, when compared with the other two breeds (H X H and H X GIR). We concluded that the breed of origin of the oocyte was more important than that of the sperm for development of thermotolerance, because bull breed did not influence embryo development after HS, and in vitro early embryonic development was impaired by increasing (from 4 to 6.5 h) the interval between ovary acquisition and oocyte aspiration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A novel setup for imaging and interferometry through reflection holography with Bi12TiPO20(BTO) sillenite photorefractive crystals is proposed. A variation of the lensless Denisiuk arrangement was developed resulting in a compact, robust and simple interferometer. A red He-Ne laser was used as light source and the holographic recording occurred by diffusion with the grating vector parallel to the crystal [0 0 1]-axis. In order to enhance the holographic image quality and reduce noise a polarizing beam splitter (PBS) was positioned at the BTO input and the crystal was tilted around the [0 0 1]-axis. This enabled the orthogonally polarized transmission and diffracted beams to be separated by the PBS, providing the holographic image only. The possibility of performing deformation and strain analysis as well as vibration measurement of small objects was demonstrated. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this paper is to present a model for orientation of pushbroom sensors that allows estimating the polynomial coefficients describing the trajectory of the platform, using linear features as ground control. Considering that pushbroom image acquisition is not instantaneous, six EOP (Exterior Orientation Parameters) for each scanned line must be estimated. The sensor position and attitude parameters are modeled with a time dependent polynomial. The relationship between object and image space is established through a mathematical model based on the equivalence between the vector normal to the projection plane in the image space and to the vector normal to the rotated projection plane in the object space. The equivalence property between planes was adapted to consider the pushbroom geometry. Some experiments with simulated data corresponding to CBERS scene (China-Brazil Earth Resource Satellite) were accomplished in order to test the developed model using straight lines. Moreover, experiments with points ground with the model based on collinearity equations adapted to the pushbroom geometry were also accomplished. The obtained results showed that the proposed model can be used to estimate the EOP of pushbroom images with suitable accuracy.
Resumo:
The advances in digital imaging technology in dentistry have provided an alternative to film-based radiography and have given new options to detect periodontal bone loss. The purpose of this study was to compare inverted and unprocessed digitized radiographic imaging in periodontal bone loss measurements. Thirty-five film-based periapical radiographs of patients suffering from moderate to advanced untreated periodontal bone loss associated to lower premolar and molars was selected from the department files, with 40 bone loss areas. The film-based radiographs were digitized with a flatbed scanner with a transparency and radiograph adapter used for transilluminating the radiograph imaging. Digitization was performed at 600 dpi and in gray scale. The images were digitized using Image Tool software by applying image inversion, that is, transformation of radiopaque structures into radiolucent structures and vice-versa. The digital data were saved as JPEG files. The images were displayed on a 15-inch and 24-bit video monitor under reduced room lighting. One calibrated examiner performed all radiographic measurements, three times, from the cementoenamel junction to the most apical extension of the bone loss, in both types of image (inverted and unprocessed). Brightness and contrast were adjusted according to the examiner's individual demand. Intraclass correlation coefficient was used to compare the measurements from both types of images. The means of radiographic measurements, in mm, for inverted and unprocessed digitized imaging were 6.4485 and 6.3790, respectively. The intraclass correlation coefficient was significant (0.99) The inverted and unprocessed digitized radiographic images were reliable and there was no difference in the diagnostic accuracy between these images regarding periodontal bone loss measurements.
Resumo:
The Paraguay River is the main tributary of the Paraná River and has an extension of 1.693 km in Brazilian territory. The navigability conditions are very important for the regional economy because most of the central-west Brazilian agricultural and mineral production is transported by the Paraguay waterway. Increased sedimentation along the channel requires continuous dredging to waterway maintenance. Systematic bathymetric surveys are periodically carried out in order to check depth condition along the channel using echo-sounding devices. In this paper, digital image processing and geostatistical analysis methods were used to analyze the applicability of the ASTER sensor to estimate channel depths in a segment of the upper Paraguay River. The results were compared with field data in order to choose the band with better adjustment and to evaluate the standard deviation. Comparing the VNIR bands, the best fit was presented by the red wavelength (band 2; 0,63 - 0,69 μm), showing a good representation of the channel depths shallow than 1,7 m. Applying geostatistical methods, the model accuracy was enhanced from 43 cm to 36 cm and undesired components were slacked. It was concluded that the digital number of band 2, converted to bathymetry information allows a good estimation of river depths and channel morphology.
Resumo:
This paper describes the development of a mechatronic system for a predictive maintenance grounded on wear particle analysis. The reckoning of wear particles containing in lubricating industrial oils brings the image acquisition system into being. The ISO 4406:1999 standard is a guide to establish the counting and evaluation processes of particles. The system applied to the acquisition and analysis of the data consists of a digital camera, a monocular microscope and an oil filtering system. A computational program was developed with the application of Visual Microsoft C++ in a way to detain the oil sample image from the microscope slide to the computer screen. Quantitative analyses of the wear debris particles bulk are exploited applying a graphical interface that was developed to render the image processing of the sample test. The implemented system has a reachable cost thus it can be applied for schooling goals and for bolstering laboratories of minor industries and medium size companies.
Resumo:
Aim: To assess the bone mineral density on conventional and digitized images, comparing whether different parameters of digitization and storage change these values. Methods: Twenty radiographs were taken from five partially dentulous dry mandibles with an aluminum 7-mm stepwedge placed on the superior edge of the film. After processing, the films were digitized with a resolution of 600 and 2,400 d.p.i. and saved as TIFF and JPEG files. On every conventional and digitized image, circular regions of interest were selected for densitometry and radiographic contrast analysis. Results: Pearson's correlation coefficient showed a significant and strong mean gray values association between digitized and conventional images, differing from radiographic contrast that did not show a significant association. ANOVA did not reveal a statistically significant difference in bone density and radiographic contrast among the four digitized image groups, but the conventional image contrast was significantly lower. Conclusions: Bone mineral density did not differ in both conventional and digitized images. The parameters of image compression and resolution, tested in this study, did not change the results of densitometry and digitization process increased the radiographic contrast.
ANN statistical image recognition method for computer vision in agricultural mobile robot navigation
Resumo:
The main application area in this project, is to deploy image processing and segmentation techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. Thereby, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for image recognition. Hence, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave computational platforms, along with the application of customized Back-propagation Multilayer Perceptron (MLP) algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of segmented images in which reasonably accurate results were obtained. © 2010 IEEE.
Resumo:
The purpose of this work is to evaluate the capacity of full polarimetric L band data to discriminate macrophyte species in Amazon wetland. Fieldwork was carried out almost simultaneously to the acquisition of the full polarimetric PALSAR data. Coherent and incoherent attributes were extracted from the image, and macrophyte morphological variables were measured on the ground. The image attributes and the macrophyte variables were compared in order to evaluate their application for discriminating macrophytes species. The findings suggest that polarimetric information could be adopted to discriminate plant species based on morphology, and that estimation of plant biomass and productivity could be improved by using the polarimetric information. © 2010 IEEE.
Resumo:
Image acquisition systems based on multi-head arrangement of digital camerasare attractive alternatives enabling a larger imaging area when compared to a single framecamera. The calibration of this kind of system can be performed in several steps or byusing simultaneous bundle adjustment with relative orientation stability constraints. Thepaper will address the details of the steps of the proposed approach for system calibration,image rectification, registration and fusion. Experiments with terrestrial and aerial imagesacquired with two Fuji FinePix S3Pro cameras were performed. The experiments focusedon the assessment of the results of self-calibrating bundle adjustment with and withoutrelative orientation constraints and the effects to the registration and fusion when generatingvirtual images. The experiments have shown that the images can be accurately rectified andregistered with the proposed approach, achieving residuals smaller than one pixel. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Background: The antibody Ki-67 is a reliable and easy tool to accurately assess the growth fraction of neoplasms in humans and animals, and it has been used to predict the clinical outcome. Therefore, the aim of the present study was to investigate the immunohistochemical expression pattern of Ki-67 in normal and neoplastic perianal glands of dogs to evaluate the possible use of this proliferation marker as an ancillary method of perianal tumor diagnosis. We studied 42 cases of perianal gland neoplasms including adenomas (n = 15), epitheliomas (n = 15), and carcinomas (n = 12). As controls, 13 tissue samples from normal perianal glands were used. A Ki-67 index was established by a computer-assisted image analysis and compared with manual counting. Results: Out of the 42 cases of perianal gland neoplasms, 34 were from males and eight from females. Recurrence was reported in 14 cases, being higher (8/12) in carcinomas. Immunostaining for Ki-67 revealed that the carcinomas showed a higher proliferation rate (9.87%) compared to groups of epitheliomas (2.66%) and adenomas (0.36%). For adenomas and epitheliomas of the perianal glands the computer-assisted counting and the manual counting gave similar results; however, only the computer-assisted image analysis was efficient to predict the perianal gland carcinoma recurrence.Conclusion: Since there were significant differences in the number of Ki-67-positive nuclei, this marker proved to be effective in helping the classification of perianal gland neoplasms and to refine the diagnosis criteria, especially in those samples with high variation in morphology/area. Also, higher Ki-67 index is related to recurrence in cases of perianal gland carcinomas. Further, the computer-assisted image analysis proved to be a fast and reliable method to assess the Ki-67 index in perianal gland neoplasms. © 2013 Pereira et al.; licensee BioMed Central Ltd.
Resumo:
Inferences about leaf anatomical characteristics had largely been made by manually measuring diverse leaf regions, such as cuticle, epidermis and parenchyma to evaluate differences caused by environmental variables. Here we tested an approach for data acquisition and analysis in ecological quantitative leaf anatomy studies based on computer vision and pattern recognition methods. A case study was conducted on Gochnatia polymorpha (Less.) Cabrera (Asteraceae), a Neotropical savanna tree species that has high phenotypic plasticity. We obtained digital images of cross-sections of its leaves developed under different light conditions (sun vs. shade), different seasons (dry vs. wet) and in different soil types (oxysoil vs. hydromorphic soil), and analyzed several visual attributes, such as color, texture and tissues thickness in a perpendicular plane from microscopic images. The experimental results demonstrated that computational analysis is capable of distinguishing anatomical alterations in microscope images obtained from individuals growing in different environmental conditions. The methods presented here offer an alternative way to determine leaf anatomical differences. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)