920 resultados para Image Based Visual Servoing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the segmentation of the headand neck lymph node regions using a new active contourbased atlas registration model. We propose to segment thelymph node regions without directly including them in theatlas registration process; instead, they are segmentedusing the dense deformation field computed from theregistration of the atlas structures with distinctboundaries. This approach results in robust and accuratesegmentation of the lymph node regions even in thepresence of significant anatomical variations between theatlas-image and the patient's image to be segmented. Wealso present a quantitative evaluation of lymph noderegions segmentation using various statistical as well asgeometrical metrics: sensitivity, specificity, dicesimilarity coefficient and Hausdorff distance. Acomparison of the proposed method with two other state ofthe art methods is presented. The robustness of theproposed method to the atlas selection, in segmenting thelymph node regions, is also evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we propose an evaluation of the angular effects altering the spectral response of the land-cover over multi-angle remote sensing image acquisitions. The shift in the statistical distribution of the pixels observed in an in-track sequence of WorldView-2 images is analyzed by means of a kernel-based measure of distance between probability distributions. Afterwards, the portability of supervised classifiers across the sequence is investigated by looking at the evolution of the classification accuracy with respect to the changing observation angle. In this context, the efficiency of various physically and statistically based preprocessing methods in obtaining angle-invariant data spaces is compared and possible synergies are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To develop and validate a simple, integer-based score to predict functional outcome in acute ischemic stroke (AIS) using variables readily available after emergency room admission. METHODS: Logistic regression was performed in the derivation cohort of previously independent patients with AIS (Acute Stroke Registry and Analysis of Lausanne [ASTRAL]) to identify predictors of unfavorable outcome (3-month modified Rankin Scale score >2). An integer-based point-scoring system for each covariate of the fitted multivariate model was generated by their β-coefficients; the overall score was calculated as the sum of the weighted scores. The model was validated internally using a 2-fold cross-validation technique and externally in 2 independent cohorts (Athens and Vienna Stroke Registries). RESULTS: Age (A), severity of stroke (S) measured by admission NIH Stroke Scale score, stroke onset to admission time (T), range of visual fields (R), acute glucose (A), and level of consciousness (L) were identified as independent predictors of unfavorable outcome in 1,645 patients in ASTRAL. Their β-coefficients were multiplied by 4 and rounded to the closest integer to generate the score. The area under the receiver operating characteristic curve (AUC) of the score in the ASTRAL cohort was 0.850. The score was well calibrated in the derivation (p = 0.43) and validation cohorts (0.22 [Athens, n = 1,659] and 0.49 [Vienna, n = 653]). AUCs were 0.937 (Athens), 0.771 (Vienna), and 0.902 (when pooled). An ASTRAL score of 31 indicates a 50% likelihood of unfavorable outcome. CONCLUSIONS: The ASTRAL score is a simple integer-based score to predict functional outcome using 6 readily available items at hospital admission. It performed well in double external validation and may be a useful tool for clinical practice and stroke research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes of functional connectivity in prodromal and early Alzheimer's disease can arise from compensatory and/or pathological processes. We hypothesized that i) there is impairment of effective inhibition associated with early Alzheimer's disease that may lead to ii) a paradoxical increase of functional connectivity. To this end we analyzed effective connectivity in 14 patients and 16 matched controls using dynamic causal modeling of functional MRI time series recorded during a visual inter-hemispheric integration task. By contrasting co-linear with non co-linear bilateral gratings, we estimated inhibitory top-down effects within the visual areas. The anatomical areas constituting the functional network of interest were identified with categorical functional MRI contrasts (Stimuli>Baseline and Co-linear gratings>Non co-linear gratings), which implicated V1 and V3v in both hemispheres. A model with reciprocal excitatory intrinsic connections linking these four regions and modulatory inhibitory effects exerted by V3v on V1 optimally explained the functional MRI time series in both subject groups. However, Alzheimer's disease was associated with significantly weakened intrinsic and modulatory connections. Top-down inhibitory effects, previously detected as relative deactivations of V1 in young adults, were observed neither in our aged controls nor in patients. We conclude that effective inhibition weakens with age and more so in early Alzheimer's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a global vision of images in forensic science. The proliferation of perspectives on the use of images throughout criminal investigations and the increasing demand for research on this topic seem to demand a forensic science-based analysis. In this study, the definitions of and concepts related to material traces are revisited and applied to images, and a structured approach is used to persuade the scientific community to extend and improve the use of images as traces in criminal investigations. Current research efforts focus on technical issues and evidence assessment. This article provides a sound foundation for rationalising and explaining the processes involved in the production of clues from trace images. For example, the mechanisms through which these visual traces become clues of presence or action are described. An extensive literature review of forensic image analysis emphasises the existing guidelines and knowledge available for answering investigative questions (who, what, where, when and how). However, complementary developments are still necessary to demystify many aspects of image analysis in forensic science, including how to review and select images or use them to reconstruct an event or assist intelligence efforts. The hypothetico-deductive reasoning pathway used to discover unknown elements of an event or crime can also help scientists understand the underlying processes involved in their decision making. An analysis of a single image in an investigative or probative context is used to demonstrate the highly informative potential of images as traces and/or clues. Research efforts should be directed toward formalising the extraction and combination of clues from images. An appropriate methodology is key to expanding the use of images in forensic science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonlocal variational formulation for interpolating a sparsel sampled image is introduced in this paper. The proposed variational formulation, originally motivated by image inpainting problems, encouragesthe transfer of information between similar image patches, following the paradigm of exemplar-based methods. Contrary to the classical inpaintingproblem, no complete patches are available from the sparse imagesamples, and the patch similarity criterion has to be redefined as here proposed. Initial experimental results with the proposed framework, at very low sampling densities, are very encouraging. We also explore somedepartures from the variational setting, showing a remarkable ability to recover textures at low sampling densities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-trial analysis of human electroencephalography (EEG) has been recently proposed for better understanding the contribution of individual subjects to a group-analysis effect as well as for investigating single-subject mechanisms. Independent Component Analysis (ICA) has been repeatedly applied to concatenated single-trial responses and at a single-subject level in order to extract those components that resemble activities of interest. More recently we have proposed a single-trial method based on topographic maps that determines which voltage configurations are reliably observed at the event-related potential (ERP) level taking advantage of repetitions across trials. Here, we investigated the correspondence between the maps obtained by ICA versus the topographies that we obtained by the single-trial clustering algorithm that best explained the variance of the ERP. To do this, we used exemplar data provided from the EEGLAB website that are based on a dataset from a visual target detection task. We show there to be robust correspondence both at the level of the activation time courses and at the level of voltage configurations of a subset of relevant maps. We additionally show the estimated inverse solution (based on low-resolution electromagnetic tomography) of two corresponding maps occurring at approximately 300 ms post-stimulus onset, as estimated by the two aforementioned approaches. The spatial distribution of the estimated sources significantly correlated and had in common a right parietal activation within Brodmann's Area (BA) 40. Despite their differences in terms of theoretical bases, the consistency between the results of these two approaches shows that their underlying assumptions are indeed compatible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Normal and abnormal brains can be segmented by registering the target image with an atlas. Here, an atlas is defined as the combination of an intensity image (template) and its segmented image (the atlas labels). After registering the atlas template and the target image, the atlas labels are propagated to the target image. We define this process as atlas-based segmentation. In recent years, researchers have investigated registration algorithms to match atlases to query subjects and also strategies for atlas construction. In this paper we present a review of the automated approaches for atlas-based segmentation of magnetic resonance brain images. We aim to point out the strengths and weaknesses of atlas-based methods and suggest new research directions. We use two different criteria to present the methods. First, we refer to the algorithms according to their atlas-based strategy: label propagation, multi-atlas methods, and probabilistic techniques. Subsequently, we classify the methods according to their medical target: the brain and its internal structures, tissue segmentation in healthy subjects, tissue segmentation in fetus, neonates and elderly subjects, and segmentation of damaged brains. A quantitative comparison of the results reported in the literature is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we explore the multivariate empirical mode decomposition combined with a Neural Network classifier as technique for face recognition tasks. Images are simultaneously decomposed by means of EMD and then the distance between the modes of the image and the modes of the representative image of each class is calculated using three different distance measures. Then, a neural network is trained using 10- fold cross validation in order to derive a classifier. Preliminary results (over 98 % of classification rate) are satisfactory and will justify a deep investigation on how to apply mEMD for face recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this Master Thesis is to discover more about Girona’s image as a tourism destination from different agents’ perspective and to study its differences on promotion or opinions. In order to meet this objective, three components of Girona’s destination image will be studied: attribute-based component, the holistic component, and the affective component. It is true that a lot of research has been done about tourism destination image, but it is less when we are talking about the destination of Girona. Some studies have already focused on Girona as a tourist destination, but they used a different type of sample and different methodological steps. This study is new among destination studies in the sense that it is based only on textual online data and it follows a methodology based on text-miming. Text-mining is a kind of methodology that allows people extract relevant information from texts. Also, after this information is extracted by this methodology, some statistical multivariate analyses are done with the aim of discovering more about Girona’s tourism image

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The state of the art to describe image quality in medical imaging is to assess the performance of an observer conducting a task of clinical interest. This can be done by using a model observer leading to a figure of merit such as the signal-to-noise ratio (SNR). Using the non-prewhitening (NPW) model observer, we objectively characterised the evolution of its figure of merit in various acquisition conditions. The NPW model observer usually requires the use of the modulation transfer function (MTF) as well as noise power spectra. However, although the computation of the MTF poses no problem when dealing with the traditional filtered back-projection (FBP) algorithm, this is not the case when using iterative reconstruction (IR) algorithms, such as adaptive statistical iterative reconstruction (ASIR) or model-based iterative reconstruction (MBIR). Given that the target transfer function (TTF) had already shown it could accurately express the system resolution even with non-linear algorithms, we decided to tune the NPW model observer, replacing the standard MTF by the TTF. It was estimated using a custom-made phantom containing cylindrical inserts surrounded by water. The contrast differences between the inserts and water were plotted for each acquisition condition. Then, mathematical transformations were performed leading to the TTF. As expected, the first results showed a dependency of the image contrast and noise levels on the TTF for both ASIR and MBIR. Moreover, FBP also proved to be dependent of the contrast and noise when using the lung kernel. Those results were then introduced in the NPW model observer. We observed an enhancement of SNR every time we switched from FBP to ASIR to MBIR. IR algorithms greatly improve image quality, especially in low-dose conditions. Based on our results, the use of MBIR could lead to further dose reduction in several clinical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new and original variational framework for atlas-based segmentation. The proposed framework integrates both the active contour framework, and the dense deformation fields of optical flow framework. This framework is quite general and encompasses many of the state-of-the-art atlas-based segmentation methods. It also allows to perform the registration of atlas and target images based on only selected structures of interest. The versatility and potentiality of the proposed framework are demonstrated by presenting three diverse applications: In the first application, we show how the proposed framework can be used to simulate the growth of inconsistent structures like a tumor in an atlas. In the second application, we estimate the position of nonvisible brain structures based on the surrounding structures and validate the results by comparing with other methods. In the final application, we present the segmentation of lymph nodes in the Head and Neck CT images, and demonstrate how multiple registration forces can be used in this framework in an hierarchical manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate gadocoletic acid (B-22956), a gadolinium-based paramagnetic blood pool agent, for contrast-enhanced coronary magnetic resonance angiography (MRA) in a Phase I clinical trial, and to compare the findings with those obtained using a standard noncontrast T2 preparation sequence. MATERIALS AND METHODS: The left coronary system was imaged in 12 healthy volunteers before B-22956 application and 5 (N = 11) and 45 (N = 7) minutes after application of 0.075 mmol/kg of body weight (BW) of B-22956. Additionally, imaging of the right coronary system was performed 23 minutes after B-22956 application (N = 6). A three-dimensional gradient echo sequence with T2 preparation (precontrast) or inversion recovery (IR) pulse (postcontrast) with real-time navigator correction was used. Assessment of the left and right coronary systems was performed qualitatively (a 4-point visual score for image quality) and quantitatively in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, visible vessel length, maximal luminal diameter, and the number of visible side branches. RESULTS: Significant (P < 0.01) increases in SNR (+42%) and CNR (+86%) were noted five minutes after B-22956 application, compared to precontrast T2 preparation values. A significant increase in CNR (+40%, P < 0.05) was also noted 45 minutes postcontrast. Vessels (left anterior descending artery (LAD), left coronary circumflex (LCx), and right coronary artery (RCA)) were also significantly (P < 0.05) sharper on postcontrast images. Significant increases in vessel length were noted for the LAD (P < 0.05) and LCx and RCA (both P < 0.01), while significantly more side branches were noted for the LAD and RCA (both P < 0.05) when compared to precontrast T2 preparation values. CONCLUSION: The use of the intravascular contrast agent B-22956 substantially improves both objective and subjective parameters of image quality on high-resolution three-dimensional coronary MRA. The increase in SNR, CNR, and vessel sharpness minimizes current limitations of coronary artery visualization with high-resolution coronary MRA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Patients with rare diseases such as congenital hypogonadotropic hypogonadism (CHH) are dispersed, often challenged to find specialized care and face other health disparities. The internet has the potential to reach a wide audience of rare disease patients and can help connect patients and specialists. Therefore, this study aimed to: (i) determine if web-based platforms could be effectively used to conduct an online needs assessment of dispersed CHH patients; (ii) identify the unmet health and informational needs of CHH patients and (iii) assess patient acceptability regarding patient-centered, web-based interventions to bridge shortfalls in care. METHODS: A sequential mixed-methods design was used: first, an online survey was conducted to evaluate health promoting behavior and identify unmet health and informational needs of CHH men. Subsequently, patient focus groups were held to explore specific patient-identified targets for care and to examine the acceptability of possible online interventions. Descriptive statistics and thematic qualitative analyses were used. RESULTS: 105 male participants completed the online survey (mean age 37 ± 11, range 19-66 years) representing a spectrum of patients across a broad socioeconomic range and all but one subject had adequate healthcare literacy. The survey revealed periods of non-adherence to treatment (34/93, 37%) and gaps in healthcare (36/87, 41%) exceeding one year. Patient focus groups identified lasting psychological effects related to feelings of isolation, shame and body-image concerns. Survey respondents were active internet users, nearly all had sought CHH information online (101/105, 96%), and they rated the internet, healthcare providers, and online community as equally important CHH information sources. Focus group participants were overwhelmingly positive regarding online interventions/support with links to reach expert healthcare providers and for peer-to-peer support. CONCLUSION: The web-based needs assessment was an effective way to reach dispersed CHH patients. These individuals often have long gaps in care and struggle with the psychosocial sequelae of CHH. They are highly motivated internet users seeking information and tapping into online communities and are receptive to novel web-based interventions addressing their unmet needs.