911 resultados para Illinois Spent Nuclear Fuel and High-Level Waste Inspection and Escort Program.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Role of swift heavy ion irradiation on the modification of transport and structural properties of high temperature superconductors is studied. Good quality YBCO thin films prepared by high pressure oxygen sputtering and laser ablation were used in this investigation. Resistivity and atomic force microscopy (AFM) were mainly used to probe superconducting and microstructural modifications resulted from the irradiation of high energy and heavy ions like 100 MeV oxygen and 200 MeV silver. Radiation induced sputtering or erosion is likely to be a major disastrous component of such high energy irradiation that could be powerful in masking phase coherence effects, atleast in grain boundaries. The extent of damage/nature of defects other than columnar defects produced by swift heavy ions is discussed in the light of AFM measurements. The effect of high energy oxygen ion irradiation is anomalous. A clear annealing effect at higher doses is seen. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of engineered landfills for the disposal of industrial wastes is currently a common practice. Bentonite is attracting a greater attention not only as capping and lining materials in landfills but also as buffer and backfill materials for repositories of high-level nuclear waste around the world. In the design of buffer and backfill materials, it is important to know the swelling pressures of compacted bentonite with different electrolyte solutions. The theoretical studies on swell pressure behaviour are all based on Diffuse Double Layer (DDL) theory. To establish a relation between the swell pressure and void ratio of the soil, it is necessary to calculate the mid-plane potential in the diffuse part of the interacting ionic double layers. The difficulty in these calculations is the elliptic integral involved in the relation between half space distance and mid plane potential. Several investigators circumvented this problem using indirect methods or by using cumbersome numerical techniques. In this work, a novel approach is proposed for theoretical estimations of swell pressures of fine-grained soil from the DDL theory. The proposed approach circumvents the complex computations in establishing the relationship between mid-plane potential and diffused plates’ distances in other words, between swell pressure and void ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, (3R,4S,5S,6R)-5-methoxy-4-(2R,3R)-2-methyl-3-(3-methylbut-2-enyl) oxiran-2-yl]-1-oxaspiro2.5]octan-6-yl] N-(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability. To probe the basis of its in vivo efficacy, the metabolism of PPI-2458 was studied in detail. Reaction phenotyping identified CYP3A4/5 as the major source of metabolism in humans. Six metabolites were isolated from liver microsomes and characterized by mass spectrometry and nuclear resonance spectroscopy, and their structures were confirmed by chemical synthesis. The synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular endothelial cell growth. In an ex vivo experiment, MetAP2 inhibition in white blood cells, thymus, and lymph nodes in rats after single dosing with PPI-2458 and the isolated metabolites was found to correlate with the in vitro activity of the individual species. In a phase 1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 hours, although the exposure of the parent compound was only similar to 10% that of the summed cytochrome P450 metabolites. Taken together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-470 ((3R, 4S, 5S, 6R)-5-methoxy-4-(2R, 3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro2.5]octan-6 -yl] N-(2-chloroacetyl)carbamate). The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-derived therapeutics for angiogenic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bentonite clays are proven to be attractive as buffer and backfill material in high-level nuclear waste repositories around the world. A quick estimation of swelling pressures of the compacted bentonites for different clay-water-electrolyte interactions is essential in the design of buffer and backfill materials. The theoretical studies on the swelling behavior of bentonites are based on diffuse double layer (DDL) theory. To establish theoretical relationship between void ratio and swelling pressure (e versus P), evaluation of elliptic integral and inverse analysis are unavoidable. In this paper, a novel procedure is presented to establish theoretical relationship of e versus P based on the Gouy-Chapman method. The proposed procedure establishes a unique relationship between electric potentials of interacting and non-interacting diffuse clay-water-electrolyte systems. A procedure is, thus, proposed to deduce the relation between swelling pressures and void ratio from the established relation between electric potentials. This approach is simple and alleviates the need for elliptic integral evaluation and also the inverse analysis. Further, application of the proposed approach to estimate swelling pressures of four compacted bentonites, for example, MX 80, Febex, Montigel and Kunigel V1, at different dry densities, shows that the method is very simple and predicts solutions with very good accuracy. Moreover, the proposed procedure provides continuous distributions of e versus P and thus it is computationally efficient when compared with the existing techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conceptual model for deep geological disposal of high level nuclear waste (HLW) is based on multiple barrier system consisting of natural and engineered barriers. Buffer/backfill material is regarded as the most important engineered barrier in HLW repositories. Due to large swelling ability, cation adsorption capacity, and low permeability bentonite is considered as suitable buffer material in HLW repositories. Japan has identified Kunigel VI bentonite, South Korea - Kyungju bentonite, China - GMZ bentonite, Belgium - FoCa clay, Sweden - MX-80 bentonite, Spain - FEBEX bentonite and Canada - Avonseal bentonite as candidate bentonite buffer for deep geological repository program. An earlier study on Indian bentonites by one of the authors suggested that bentonite from Barmer district of Rajasthan (termed Barmer 1 bentonite), India is suited for use as buffer material in deep geological repositories. However, the hydro-mechanical properties of the Barmer 1 bentonite are unavailable. This paper characterizes Barmer 1 bentonite for hydro-mechanical properties, such as, swell pressure, saturated permeability, soil water characteristic curve (SWCC) and unconfined compression strength at different dry densities. The properties of Barmer 1 bentonite were compared with bentonite buffers reported in literature and equations for designing swell pressure and saturated permeability coefficient of bentonite buffers were arrived at. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium aluminate spinel (MgAl2O4) forms an interesting system having tetrahedral and octahedral voids filled with near similar sized divalent Mg2+ and trivalent Al3+ cations. Structural disorder (e.g., Mg-Al antisite defects) can be tuned by synthetic conditions. This study reports the evolution of Mg/Al disorder in MgAl2O4 prepared by combustion synthesis using different types of fuels. The effect of nature of fuel and the final calcination temperature (600 degrees C-900 degrees C for 9h) on degree of cation ordering has been investigated combining powder X-ray (XRD) and neutron (NPD) diffraction. The results indicate very high degree of inversion in the samples crystallized at low annealing temperature, which on further annealing reduces toward the thermodynamically stable values. Raman spectroscopy, probing MgO4, and AlO4 tetrahedral bonds, confirmed the results at a local level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bentonite is a preferred buffer and backfill material for deep geological disposal of high-level nuclear waste (HLW). Bentonite does not retain anions by virtue of its negatively charged basal surface. Imparting anion retention ability to bentonite is important to enable the expansive clay to retain long-lived I-129 (iodine-129; half-life = 16 million years) species that may escape from the HLW geological repository. Silver-kaolinite (AgK) material is prepared as an additive to improve the iodide retention capacity of bentonite. The AgK is prepared by heating kaolinite-silver nitrate mix at 400 degrees C to study the kaolinite influence on the transition metal ion when reacting at its dehydroxylation temperature. Thermo gravimetric-Evolved Gas Detection analysis, X-ray diffraction analysis, X-ray photo electron spectroscopy and electron probe micro analysis indicated that silver occurs as AgO/Ag2O surface coating on thermally reacting kaolinite with silver nitrate at 400 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the pressing need to meet an ever-increasing energy demand, the combustion systems utilizing fossil fuels have been the major contributors to carbon footprint. As the combustion of conventional energy resources continue to produce significant Green House gas (GHG) emissions, there is a strong emphasis to either upgrade or find an energy-efficient eco-friendly alternative to the traditional hydrocarbon fuels. With recent developments in nanotechnology, the ability to manufacture materials with custom tailored properties at nanoscale has led to the discovery of a new class of high energy density fuels containing reactive metallic nanoparticles (NPs). Due to the high reactive interfacial area and enhanced thermal and mass transport properties of nanomaterials, the high heat of formation of these metallic fuels can now be released rapidly, thereby saving on specific fuel consumption and hence reducing GHG emissions. In order to examine the efficacy of nanofuels in energetic formulations, it is imperative to first study their combustion characteristics at the droplet scale that form the fundamental building block for any combustion system utilizing liquid fuel spray. During combustion of such multiphase, multicomponent droplets, the phenomenon of diffusional entrapment of high volatility species leads to its explosive boiling (at the superheat limit) thereby leading to an intense internal pressure build-up. This pressure upsurge causes droplet fragmentation either in form of a microexplosion or droplet puffing followed by atomization (with formation of daughter droplets) featuring disruptive burning. Both these atomization modes represent primary mechanisms for extracting the high oxidation energies of metal NP additives by exposing them to the droplet flame (with daughter droplets acting as carriers of NPs). Atomization also serves as a natural mechanism for uniform distribution and mixing of the base fuel and enhancing burning rates (due to increase in specific surface area through formation of smaller daughter droplets). However, the efficiency of atomization depends on the thermo-physical properties of the base fuel, NP concentration and type. For instance, at dense loading NP agglomeration may lead to shell formation which would sustain the pressure upsurge and hence suppress atomization thereby reducing droplet gasification rate. Contrarily, the NPs may act as nucleation sites and aid boiling and the radiation absorption by NPs (from the flame) may lead to enhanced burning rates. Thus, nanoadditives may have opposing effects on the burning rate depending on the relative dominance of processes occurring at the droplet scale. The fundamental idea in this study is to: First, review different thermo-physical processes that occur globally at the droplet and sub-droplet scale such as surface regression, shell formation due to NP agglomeration, internal boiling, atomization/NP transport to flame zone and flame acoustic interaction that occur at the droplet scale and second, understand how their interaction changes as a function of droplet size, NP type, NP concentration and the type of base fuel. This understanding is crucial for obtaining phenomenological insights on the combustion behavior of novel nanofluid fuels that show great promise for becoming the next-generation fuels. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technology scaling has enabled drastic growth in the computational and storage capacity of integrated circuits (ICs). This constant growth drives an increasing demand for high-bandwidth communication between and within ICs. In this dissertation we focus on low-power solutions that address this demand. We divide communication links into three subcategories depending on the communication distance. Each category has a different set of challenges and requirements and is affected by CMOS technology scaling in a different manner. We start with short-range chip-to-chip links for board-level communication. Next we will discuss board-to-board links, which demand a longer communication range. Finally on-chip links with communication ranges of a few millimeters are discussed.

Electrical signaling is a natural choice for chip-to-chip communication due to efficient integration and low cost. IO data rates have increased to the point where electrical signaling is now limited by the channel bandwidth. In order to achieve multi-Gb/s data rates, complex designs that equalize the channel are necessary. In addition, a high level of parallelism is central to sustaining bandwidth growth. Decision feedback equalization (DFE) is one of the most commonly employed techniques to overcome the limited bandwidth problem of the electrical channels. A linear and low-power summer is the central block of a DFE. Conventional approaches employ current-mode techniques to implement the summer, which require high power consumption. In order to achieve low-power operation we propose performing the summation in the charge domain. This approach enables a low-power and compact realization of the DFE as well as crosstalk cancellation. A prototype receiver was fabricated in 45nm SOI CMOS to validate the functionality of the proposed technique and was tested over channels with different levels of loss and coupling. Measurement results show that the receiver can equalize channels with maximum 21dB loss while consuming about 7.5mW from a 1.2V supply. We also introduce a compact, low-power transmitter employing passive equalization. The efficacy of the proposed technique is demonstrated through implementation of a prototype in 65nm CMOS. The design achieves up to 20Gb/s data rate while consuming less than 10mW.

An alternative to electrical signaling is to employ optical signaling for chip-to-chip interconnections, which offers low channel loss and cross-talk while providing high communication bandwidth. In this work we demonstrate the possibility of building compact and low-power optical receivers. A novel RC front-end is proposed that combines dynamic offset modulation and double-sampling techniques to eliminate the need for a short time constant at the input of the receiver. Unlike conventional designs, this receiver does not require a high-gain stage that runs at the data rate, making it suitable for low-power implementations. In addition, it allows time-division multiplexing to support very high data rates. A prototype was implemented in 65nm CMOS and achieved up to 24Gb/s with less than 0.4pJ/b power efficiency per channel. As the proposed design mainly employs digital blocks, it benefits greatly from technology scaling in terms of power and area saving.

As the technology scales, the number of transistors on the chip grows. This necessitates a corresponding increase in the bandwidth of the on-chip wires. In this dissertation, we take a close look at wire scaling and investigate its effect on wire performance metrics. We explore a novel on-chip communication link based on a double-sampling architecture and dynamic offset modulation technique that enables low power consumption and high data rates while achieving high bandwidth density in 28nm CMOS technology. The functionality of the link is demonstrated using different length minimum-pitch on-chip wires. Measurement results show that the link achieves up to 20Gb/s of data rate (12.5Gb/s/$\mu$m) with better than 136fJ/b of power efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noise measurements from 140°K to 350°K ambient temperature and between 10kHz and 22MHz performed on a double injection silicon diode as a function of operating point indicate that the high frequency noise depends linearly on the ambient temperature T and on the differential conductance g measured at the same frequency. The noise is represented quantitatively by〈i^2〉 = α•4kTgΔf. A new interpretation demands Nyquist noise with α ≡ 1 in these devices at high frequencies. This is in accord with an equivalent circuit derived for the double injection process. The effects of diode geometry on the static I-V characteristic as well as on the ac properties are illustrated. Investigation of the temperature dependence of double injection yields measurements of the temperature variation of the common high-level lifetime τ(τ ∝ T^2), the hole conductivity mobility µ_p (µ_p ∝ T^(-2.18)) and the electron conductivity mobility µ_n(µ_n ∝ T^(-1.75)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was conducted among fifty women fish vendors in Kancheepuram and Chennai districts to determine the factors influencing the livelihood index and level of aspiration. The independent variables such as annual income, scientific orientation, expenditure per year and savings per year were found to have highest factor loadings on livelihood index and level of aspiration of fisherwomen. Besides most of the fisherwomen had a high level (score of <50) of livelihood index and a high level (score greater than 13) of aspiration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study a total of 75 species were identified, from which 17 species, 9 genes and 6 families; belonged to Green Algae, 18 species, 7 genes and 4 families; belonged to Brown Algae, and 40 species, 18 genes and 11 families; belonged to Red Algae. From total times spent for sampling, it was determined that at lengeh harbor with 6 species, had the lowest diversity of green algae. The species diversity of brown algae at Michael location with 10 species each; had the highest, and Tahooneh location with 5 species; had the lowest species diversity. Species diversity of red algae at Michael location with 28 species; had the highest, and Sayeh Khosh location with 13 species; had the lowest diversity. From all locations where sampling took place, the highest species diversity regarding Time and Space for all three groups of algae; were associated to Late February (20th. Feb. ), and late March(20th. March). Coverage data of macroalgae and Ecological Evaluation Index indicate a high level of eutrophication for the Saieh khosh, and Bostaneh, They are classified as zones with a bad and poor ecological status. It has been proved that concentrations of biogenic elements and phytoplankton blooming are higher in these zones. The best values of the estimated metrics at Tahooneh and Michaeil could be explained with the good ecological conditions in that zone and the absence of pollution sources close to that transect . The values of abundance of macroalgae and Ecological Evaluation Index indicate a moderate ecological conditions for the Koohin, Lengeh and Chirooieh.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for VVER-1000 fuel rearrangement optimization that takes into account both cladding durability and fuel burnup and which is suitable for any regime of normal reactor operation has been established. The main stages involved in solving the problem of fuel rearrangement optimization are discussed in detail. Using the proposed fuel rearrangement efficiency criterion, a simple example VVER-1000 fuel rearrangement optimization problem is solved under deterministic and uncertain conditions. It is shown that the deterministic and robust (in the face of uncertainty) solutions of the rearrangement optimization problem are similar in principle, but the robust solution is, as might be anticipated, more conservative. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing need for very small nuclear reactors for space applications and as portable high-intensity neutron sources. This technical note investigates the question of what is the smallest possible thermal reactor. It was found that the smallest reactor is a spherically shaped solution of 242mAm(NO3)3 in water. The weight of such a reactor is 4.95 kg with 0.7 kg of 242mAm nuclear fuel. The radius of the reactor in this case is 9.6 cm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proliferation potential of the present light water reactor (LWR) fuel cycle is related primarily to the quantity and the quality of the residual Pu contained in the spent-fuel stockpile, although other potentially “weapons usable” materials are also a concern. Thorium-based nuclear fuel produces much smaller amounts of Pu in comparison with standard LWR fuel, and consequently, it is more proliferation resistant than conventional slightly enriched all-U fuel; the long-term toxicity of the spent-fuel stockpile is also reduced