835 resultados para Idealized model for theory development
Resumo:
A limited but accumulating body of research and theoretical commentary offers support for core claims of the “institutional-anomie theory” of crime (IAT) and points to areas needing further development. In this paper, which focuses on violent crime, we clarify the concept of social institutions, elaborate the cultural component of IAT, derive implications for individual behavior, summarize empirical applications, and propose directions for future research. Drawing on Talcott Parsons, we distinguish the “subjective” and “objective” dimensions of institutional dynamics and discuss their interrelationship. We elaborate on the theory’s cultural component with reference to Durkheim’s distinction between “moral” and “egoistic” individualism and propose that a version of the egoistic type characterizes societies in which the economy dominates the institutional structure, anomie is rampant, and levels of violent crime are high. We also offer a heuristic model of IAT that integrates macro- and individual levels of analysis. Finally, we discuss briefly issues for the further theoretical elaboration of this macro-social perspective on violent crime. Specifically, we call attention to the important tasks of explaining the emergence of economic dominance in the institutional balance of power and of formulating an institutional account for distinctive punishment practices, such as the advent of mass incarceration in the United States.
Resumo:
A model of theoretical science is set forth to guide the formulation of general theories around abstract concepts and processes. Such theories permit explanatory application to many phenomena that are not ostensibly alike, and in so doing encompass socially disapproved violence, making special theories of violence unnecessary. Though none is completely adequate for the explanatory job, at least seven examples of general theories that help account for deviance make up the contemporary theoretical repertoire. From them, we can identify abstractions built around features of offenses, aspects of individuals, the nature of social relationships, and different social processes. Although further development of general theories may be hampered by potential indeterminacy of the subject matter and by the possibility of human agency, maneuvers to deal with such obstacles are available.
Resumo:
This paper provides an insight to the development of a process model for the essential expansion of the automatic miniload warehouse. The model is based on the literature research and covers four phases of a warehouse expansion: the preparatory phase, the current state analysis, the design phase and the decision making phase. In addition to the literature research, the presented model is based on a reliable data set and can be applicable with a reasonable effort to ensure the informed decision on the warehouse layout. The model is addressed to users who are usually employees of logistics department, and is oriented on the improvement of the daily business organization combined with the warehouse expansion planning.
Resumo:
Compliance with punctual delivery under the high pressure of costs can be implemented through the optimization of the in-house tool supply. Within the Transfer Project 13 of the Collaborative Research Centre 489 using the example of the forging industry, a mathematical model was developed which determines the minimum inventory of forging tools required for production, considering the tool appropriation delay.
Resumo:
Simulation techniques are almost indispensable in the analysis of complex systems. Materials- and related information flow processes in logistics often possess such complexity. Further problem arise as the processes change over time and pose a Big Data problem as well. To cope with these issues adaptive simulations are more and more frequently used. This paper presents a few relevant advanced simulation models and intro-duces a novel model structure, which unifies modelling of geometrical relations and time processes. This way the process structure and their geometric relations can be handled in a well understandable and transparent way. Capabilities and applicability of the model is also presented via a demonstrational example.
Resumo:
Fractures of the keel bone, a bone extending ventrally from the sternum, are a serious health and welfare problem in free range laying hens. Recent findings suggest that a major cause of keel damage within extensive systems is collisions with internal housing structures, though investigative efforts have been hindered by difficulties in examining mechanisms and likely influencing factors at the moment of fracture. The objectives of this study were to develop an ex vivo impact protocol to model bone fracture in hens caused by collision, to assess impact and bird-related factors influencing fracture occurrence and severity, and to identify correlations of mechanical and structural properties between different skeletal sites. We induced keel bone fractures in euthanized hens using a drop-weight impact tester able to generate a range of impact energies, producing fractures that replicate those commonly found in commercial settings. The results demonstrated that impact energies of a similar order to those expected in normal housing were able to produce fractures, and that greater collision energies resulted in an increased likelihood of fractures and of greater severity. Relationships were also seen with keel's lateral surface bone mineral density, and the peak reactive force (strength) at the base of the manubrial spine. Correlations were also identified between the keel and long bones with respect to both strength and bone mineral density. This is the first study able to relate impact and bone characteristics with keel bone fracture at the moment of collision. Greater understanding of these relationships will provide means to reduce levels of breakage and severity in commercial systems.
Resumo:
Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.
Resumo:
Motivation is a core concept to understand work related outcomes and vocational pursuits. However, existing research mostly focused on specific aspects of motivation, such as goals or self-efficacy beliefs, while falling short of adequately addressing more complex and integrative notions of motivation. Advancing the current state of research, we draw from Motivational Systems Theory and a model of proactive motivation to propose a comprehensive model of work-related motivation. Specifically, we define motivation as a system of mutually related factors consisting of goals, emotions, and personal agency beliefs, comprised by capability beliefs and context evaluations. Adapting this model of motivation to the school-to-work transition, we postulate that this motivational system is affected by different social, personal, and environmental variables, for example social support, the presence of role-models, personality traits, and scholastic achievement. We further expect that students with more autonomous work-related goals, expectations of more positive emotional experiences in their future working life, fewer perceived barriers to their career development, and higher work-related self-efficacy beliefs would be more successful in their transition from school to work. We also propose that goal-directed engagement acts as a partial mediator in the relationship between motivation and a successful transition. Finally, we hypothesize that work-related motivation while in school will have meaningful effects on positive outcomes while in vocational training, as represented by more work engagement, higher career commitment, job satisfaction, and lower intentions to quit training. In sum, we advance the point that the adaptation of a broader concept of work-related motivation in the school-to-work transition would result in more powerful predictions of success in this transition and would enhance scientific research and interventions in career development and counselling practice.
Resumo:
AIMS As 4-day-old mice of the severe spinal muscular atrophy (SMA) model (dying at 5-8 days) display pronounced neuromuscular changes in the diaphragm but not the soleus muscle, we wanted to gain more insight into the relationship between muscle development and the emergence of pathological changes and additionally to analyse intercostal muscles which are affected in human SMA. METHODS Structures of muscle fibres and neuromuscular junctions (NMJs) of the diaphragm, intercostal and calf muscles of prenatal (E21) and postnatal (P0 and P4) healthy and SMA mice were analysed by light and transmission electron microscopy. NMJ innervation was studied by whole mount immunofluorescence in diaphragms of P4 mice. RESULTS During this period, the investigated muscles still show a significant neck-to-tail developmental gradient. The diaphragm and calf muscles are most and least advanced, respectively, with respect to muscle fibre fusion and differentiation. The number and depth of subsynaptic folds increases, and perisynaptic Schwann cells (PSCs) acquire a basal lamina on their outer surface. Subsynaptic folds are connected to an extensive network of tubules and beaded caveolae, reminiscent of the T system in adult muscle. Interestingly, intercostal muscles from P4 SMA mice show weaker pathological involvement (that is, vacuolization of PSCs and perineurial cells) than those previously described by us for the diaphragm, whereas calf muscles show no pathological changes. CONCLUSION SMA-related alterations appear to occur only when the muscles have reached a certain developmental maturity. Moreover, glial cells, in particular PSCs, play an important role in SMA pathogenesis.
Resumo:
Barry Saltzman was a giant in the fields of meteorology and climate science. A leading figure in the study of weather and climate for over 40 yr, he has frequently been referred to as the "father of modern climate theory." Ahead of his time in many ways, Saltzman made significant contributions to our understanding of the general circulation and spectral energetics budget of the atmosphere, as well as climate change across a wide spectrum of time scales. In his endeavor to develop a unified theory of how the climate system works, lie played a role in the development of energy balance models, statistical dynamical models, and paleoclimate dynamical models. He was a pioneer in developing meteorologically motivated dynamical systems, including the progenitor of Lorenz's famous chaos model. In applying his own dynamical-systems approach to long-term climate change, he recognized the potential for using atmospheric general circulation models in a complimentary way. In 1998, he was awarded the Carl-Gustaf Rossby medal, the highest honor of the American Meteorological Society "for his life-long contributions to the study of the global circulation and the evolution of the earth's climate." In this paper, the authors summarize and place into perspective some of the most significant contributions that Barry Saltzman made during his long and distinguished career. This short review also serves as an introduction to the papers in this special issue of the Journal of Climate dedicated to Barry's memory.
Resumo:
Species in the genus Naegleria are free-living amoebae of the soil and warm fresh water. Although around 30 species have been recognized, Naegleria fowleri is the only one that causes primary amoebic meningoencephalitis (PAM) in humans. PAM is an acute and fast progressing disease affecting the central nervous system. Most of the patients die within 1-2 weeks of exposure to the infectious water source. The fact that N. fowleri causes such fast progressing and highly lethal infections has opened many questions regarding the relevant pathogenicity factors of the amoeba. In order to investigate the pathogenesis of N. fowleri under defined experimental conditions, we developed a novel high- versus low-pathogenicity model for this pathogen. We showed that the composition of the axenic growth media influenced growth behaviour and morphology, as well as in vitro cytotoxicity and in vivo pathogenicity of N. fowleri. Trophozoites maintained in Nelson's medium were highly pathogenic for mice, demonstrated rapid in vitro proliferation, characteristic expression of surface membrane vesicles and a small cell diameter, and killed target mouse fibroblasts by both contact-dependent and -independent destruction. In contrast, N. fowleri cultured in PYNFH medium exhibited a low pathogenicity, slower growth, increased cell size and contact-dependent target cell destruction. However, cultivation of the amoeba in PYNFH medium supplemented with liver hydrolysate (LH) resulted in trophozoites that were highly pathogenic in mice, and demonstrated an intermediate proliferation rate in vitro, diminished cell diameter and contact-dependent target cell destruction. Thus, in this model, the presence of LH resulted in increased proliferation of trophozoites in vitro and enhanced pathogenicity of N. fowleri in mice. However, neither in vitro cytotoxicity mechanisms nor the presence of membrane vesicles on the surface correlated with the pathologic potential of the amoeba. This indicated that the pathogenicity of N. fowleri remains a complex interaction between as-yet-unidentified cellular mechanisms.
Resumo:
This study examines how different microphysical parameterization schemes influence orographically induced precipitation and the distributions of hydrometeors and water vapour for midlatitude summer conditions in the Weather Research and Forecasting (WRF) model. A high-resolution two-dimensional idealized simulation is used to assess the differences between the schemes in which a moist air flow is interacting with a bell-shaped 2 km high mountain. Periodic lateral boundary conditions are chosen to recirculate atmospheric water in the domain. It is found that the 13 selected microphysical schemes conserve the water in the model domain. The gain or loss of water is less than 0.81% over a simulation time interval of 61 days. The differences of the microphysical schemes in terms of the distributions of water vapour, hydrometeors and accumulated precipitation are presented and discussed. The Kessler scheme, the only scheme without ice-phase processes, shows final values of cloud liquid water 14 times greater than the other schemes. The differences among the other schemes are not as extreme, but still they differ up to 79% in water vapour, up to 10 times in hydrometeors and up to 64% in accumulated precipitation at the end of the simulation. The microphysical schemes also differ in the surface evaporation rate. The WRF single-moment 3-class scheme has the highest surface evaporation rate compensated by the highest precipitation rate. The different distributions of hydrometeors and water vapour of the microphysical schemes induce differences up to 49 W m−2 in the downwelling shortwave radiation and up to 33 W m−2 in the downwelling longwave radiation.
Resumo:
XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only XP patients have a high predisposition to developing cancer. Hence, we developed a fly model to obtain novel insights into the defects caused by individual hypomorphic alleles identified in human XP-D patients. This model revealed that the mutations that displayed the greatest in vivo UV sensitivity in Drosophila did not correlate with those that led to tumor formation in humans. Immunoprecipitations followed by targeted quantitative MS/MS analysis showed how different xpd mutations affected the formation or stability of different transcription factor IIH (TFIIH) subcomplexes. The XP mutants most clearly linked to high cancer risk, Xpd R683W and R601L, showed a reduced interaction with the core TFIIH and also an abnormal interaction with the Cdk-activating kinase (CAK) complex. Interestingly, these two XP alleles additionally displayed high levels of chromatin loss and free centrosomes during the rapid nuclear division phase of the Drosophila embryo. Finally, the xpd mutations showing defects in the coordination of cell cycle timing during the Drosophila embryonic divisions correlated with those human mutations that cause the neurodevelopmental abnormalities and developmental growth defects observed in XP/CS and TTD patients.
Resumo:
We introduce a version of operational set theory, OST−, without a choice operation, which has a machinery for Δ0Δ0 separation based on truth functions and the separation operator, and a new kind of applicative set theory, so-called weak explicit set theory WEST, based on Gödel operations. We show that both the theories and Kripke–Platek set theory KPKP with infinity are pairwise Π1Π1 equivalent. We also show analogous assertions for subtheories with ∈-induction restricted in various ways and for supertheories extended by powerset, beta, limit and Mahlo operations. Whereas the upper bound is given by a refinement of inductive definition in KPKP, the lower bound is by a combination, in a specific way, of realisability, (intuitionistic) forcing and negative interpretations. Thus, despite interpretability between classical theories, we make “a detour via intuitionistic theories”. The combined interpretation, seen as a model construction in the sense of Visser's miniature model theory, is a new way of construction for classical theories and could be said the third kind of model construction ever used which is non-trivial on the logical connective level, after generic extension à la Cohen and Krivine's classical realisability model.
Resumo:
Based on common aspects of recent models of career decision-making (CDM) a sixphase model of CDM for secondary students is presented and empirically evaluated. The study tested the hypothesis that students who are in later phases possess more career choice readiness and consider different numbers of career alternatives. 266 Swiss secondary students completed measures tapping phase of CDM, career choice readiness, and number of considered career options. Career choice readiness showed an increase with phase of CDM. Later phases were generally associated with a larger increase in career choice readiness. Number of considered career options showed a curve-linear development with fewer options considered at the beginning and at the end of the process. Male students showed a larger variability in their distribution among the process with more male than female students in the first and last phase of the process. Implications for theory and practice are presented.