980 resultados para INTERSTELLAR DUST
Resumo:
Successive alkalinity producing systems (SAPSs) are widely used for treating acid mine drainage (AMD) and alleviating clogging commonly occurring in limestone systems due to an amorphous ferric precipitate. In this study, iron dust, bone char, micrite and their admixtures were used to treat arseniccontaining AMD. A particular interest was devoted to arsenic removal performance, mineralogical constraints on arsenic retention ability and permeability variation during column experiment for 140 days. The results showed that the sequence of the arsenic removal capacity was as follows: bone char > micrite > iron dust. The combination of 20% v/v iron dust and 80% v/v bone char/micrite columns can achieve better hydraulic conductivity and phosphorus-retention capacity than single micrite and bone char columns. The addition of iron dust created reductive environment and resulted in the transformation of coating material from colloidal phase to secondary mineral phase, such as green rust and phosphoerrite, which obviously ameliorates hydraulic conductivity of systems. The sequential extraction experiments indicated that the stable fractions of arsenic in columns were enhanced with help of iron dust compared to single bone char and micrite columns. A combination of iron dust and micrite/bone char represented a potential SAPS for treating As-containing AMD.
Resumo:
Locally available different bbiomass solid wastes, pine seed, date seed, plum seed, nutshell, hay of catkin, rice husk, jute stick, saw-dust, wheat straw and linseed residue in the particle form have been pyrolyzed in laboratory scale fixed bed reactor. The products obtained are pyrolysis oil, solid char and gas. The oil and char are collected while the gas is flared into atmosphere. The variation of oil yield for different biomass feedstock with reaction parameters like, reactor bed temperature, feed size and running time is presented in a comparative way in the paper. A maximum liquid yield of 55 wt% of dry feedstock is obtained at an optimum temperature of 500 °C for a feed size of 300-600 μm with a running time of 55 min with nutshell as the feedstock while the minimum liquid yield is found to be 30 wt% of feedstock at an optimum temperature of 400 °C for a feed size of 2.36 mm with a running time of 65 min for linseed residue. A detailed study on the variation of product yields with reaction parameters is presented for the latest investigation with pine seed as the feedstock where a maximum liquid yield of 40 wt% of dry feedstock is obtained at an optimum temperature of 500 °C for a feed size of 2.36-2.76 mm with a running time of 120 min. The characterization of the pyrolysis oil is carried out and a comparison of some selected properties of the oil is presented. From the study it is exhibited that the biomass solid wastes have the potential to be converted into liquid oil as a source of renewable energy with some further upgrading of the products.
Resumo:
The link between chronic immune activation and tumorigenesis is well established. Compelling evidence has accumulated that histologic assessment of infiltration patterns of different host immune response components in non-small cell lung cancer specimens helps identify different prognostic patient subgroups. This review provides an overview of recent insights gained in the understanding of the role played by chronic inflammation in lung carcinogenesis. The usefulness of quantification of different populations of lymphocytes, natural killer cells, macrophages, and mast cells within the tumor microenvironment in non-small cell lung cancer is also discussed. In particular, the importance of assessment of inflammatory cell microlocalization within both the tumor islet and surrounding stromal components is emphasized. Copyright © 2010 by the International Association for the Study of Lung Cancer.
Resumo:
Australia is a high-potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage. However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two dimensional (2D) numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.
Resumo:
Australia is a high potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage.However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional(2D numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.
Resumo:
This is a practice-led project consisting of a Young Adult novel, Open Cut, and an exegesis, 'I Wouldn't Say That': Finding a Young Adult, Female Voice in a Queensland Mining Town. The thesis investigates the use of first person narration in order to create an immediate engaging, realist Young Adult Fiction. The research design is bound by a feminist interpretative paradigm. The methodology employed is practice-led, auto-ethnography, and participant observation. Particular characteristics of first person narration used in Australian Young Adult Fiction are identified in an analysis of Dust, by Christine Bongers, and Jasper Jones, by Craig Silvey. The exegesis also contains a reflection on the researcher's creative work, and the process used to draft, edit, plot and construct the novel. The research contributes to knowledge in the field of Young Adult Literature because it offers a graphic portrayal of an Australian mining town that has not been heard before.
Resumo:
This paper presents an approach to promote the integrity of perception systems for outdoor unmanned ground vehicles (UGV) operating in challenging environmental conditions (presence of dust or smoke). The proposed technique automatically evaluates the consistency of the data provided by two sensing modalities: a 2D laser range finder and a millimetre-wave radar, allowing for perceptual failure mitigation. Experimental results, obtained with a UGV operating in rural environments, and an error analysis validate the approach.
Resumo:
This work aims to contribute to the reliability and integrity of perceptual systems of unmanned ground vehicles (UGV). A method is proposed to evaluate the quality of sensor data prior to its use in a perception system by utilising a quality metric applied to heterogeneous sensor data such as visual and infrared camera images. The concept is illustrated specifically with sensor data that is evaluated prior to the use of the data in a standard SIFT feature extraction and matching technique. The method is then evaluated using various experimental data sets that were collected from a UGV in challenging environmental conditions, represented by the presence of airborne dust and smoke. In the first series of experiments, a motionless vehicle is observing a ’reference’ scene, then the method is extended to the case of a moving vehicle by compensating for its motion. This paper shows that it is possible to anticipate degradation of a perception algorithm by evaluating the input data prior to any actual execution of the algorithm.
Resumo:
This paper proposes an experimental study of quality metrics that can be applied to visual and infrared images acquired from cameras onboard an unmanned ground vehicle (UGV). The relevance of existing metrics in this context is discussed and a novel metric is introduced. Selected metrics are evaluated on data collected by a UGV in clear and challenging environmental conditions, represented in this paper by the presence of airborne dust or smoke. An example of application is given with monocular SLAM estimating the pose of the UGV while smoke is present in the environment. It is shown that the proposed novel quality metric can be used to anticipate situations where the quality of the pose estimate will be significantly degraded due to the input image data. This leads to decisions of advantageously switching between data sources (e.g. using infrared images instead of visual images).
Resumo:
This paper proposes an experimental study of quality metrics that can be applied to visual and infrared images acquired from cameras onboard an unmanned ground vehicle (UGV). The relevance of existing metrics in this context is discussed and a novel metric is introduced. Selected metrics are evaluated on data collected by a UGV in clear and challenging environmental conditions, represented in this paper by the presence of airborne dust or smoke.
Resumo:
This work aims to contribute to reliability and integrity in perceptual systems of autonomous ground vehicles. Information theoretic based metrics to evaluate the quality of sensor data are proposed and applied to visual and infrared camera images. The contribution of the proposed metrics to the discrimination of challenging conditions is discussed and illustrated with the presence of airborne dust and smoke.
Resumo:
This document describes large, accurately calibrated and time-synchronised datasets, gathered in controlled environmental conditions, using an unmanned ground vehicle equipped with a wide variety of sensors. These sensors include: multiple laser scanners, a millimetre wave radar scanner, a colour camera and an infra-red camera. Full details of the sensors are given, as well as the calibration parameters needed to locate them with respect to each other and to the platform. This report also specifies the format and content of the data, and the conditions in which the data have been gathered. The data collection was made in two different situations of the vehicle: static and dynamic. The static tests consisted of sensing a fixed ’reference’ terrain, containing simple known objects, from a motionless vehicle. For the dynamic tests, data were acquired from a moving vehicle in various environments, mainly rural, including an open area, a semi-urban zone and a natural area with different types of vegetation. For both categories, data have been gathered in controlled environmental conditions, which included the presence of dust, smoke and rain. Most of the environments involved were static, except for a few specific datasets which involve the presence of a walking pedestrian. Finally, this document presents illustrations of the effects of adverse environmental conditions on sensor data, as a first step towards reliability and integrity in autonomous perceptual systems.
Resumo:
In this paper we present large, accurately calibrated and time-synchronized data sets, gathered outdoors in controlled and variable environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. These include four 2D laser scanners, a radar scanner, a color camera and an infrared camera. It provides a full description of the system used for data collection and the types of environments and conditions in which these data sets have been gathered, which include the presence of airborne dust, smoke and rain.
Resumo:
This work aims to promote integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicles equipped with a camera and a 2D laser range finder. A method to check for inconsistencies between the data provided by these two heterogeneous sensors is proposed and discussed. First, uncertainties in the estimated transformation between the laser and camera frames are evaluated and propagated up to the projection of the laser points onto the image. Then, for each pair of laser scan-camera image acquired, the information at corners of the laser scan is compared with the content of the image, resulting in a likelihood of correspondence. The result of this process is then used to validate segments of the laser scan that are found to be consistent with the image, while inconsistent segments are rejected. Experimental results illustrate how this technique can improve the reliability of perception in challenging environmental conditions, such as in the presence of airborne dust.
Resumo:
This work aims to promote reliability and integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicle (UGV) autonomy. For this purpose, a comprehensive UGV system, comprising many different exteroceptive and proprioceptive sensors has been built. The first contribution of this work is a large, accurately calibrated and synchronised, multi-modal data-set, gathered in controlled environmental conditions, including the presence of dust, smoke and rain. The data have then been used to analyse the effects of such challenging conditions on perception and to identify common perceptual failures. The second contribution is a presentation of methods for mitigating these failures to promote perceptual integrity in adverse environmental conditions.