913 resultados para INTERFACES
Resumo:
Finite Element modelling of bone fracture fixation systems allows computational investigation of the deformation response of the bone to load. Once validated, these models can be easily adapted to explore changes in design or configuration of a fixator. The deformation of the tissue within the fracture gap determines its healing and is often summarised as the stiffness of the construct. FE models capable of reproducing this behaviour would provide valuable insight into the healing potential of different fixation systems. Current model validation techniques lack depth in 6D load and deformation measurements. Other aspects of the FE model creation such as the definition of interfaces between components have also not been explored. This project investigated the mechanical testing and FE modelling of a bone– plate construct for the determination of stiffness. In depth 6D measurement and analysis of the generated forces, moments and movements showed large out of plane behaviours which had not previously been characterised. Stiffness calculated from the interfragmentary movement was found to be an unsuitable summary parameter as the error propagation is too large. Current FE modelling techniques were applied in compression and torsion mimicking the experimental setup. Compressive stiffness was well replicated, though torsional stiffness was not. The out of plane behaviours prevalent in the experimental work were not replicated in the model. The interfaces between the components were investigated experimentally and through modification to the FE model. Incorporation of the interface modelling techniques into the full construct models had no effect in compression but did act to reduce torsional stiffness bringing it closer to that of the experiment. The interface definitions had no effect on out of plane behaviours, which were still not replicated. Neither current nor novel FE modelling techniques were able to replicate the out of plane behaviours evident in the experimental work. New techniques for modelling loads and boundary conditions need to be developed to mimic the effects of the entire experimental system.
Resumo:
CubIT is a multi-user, large-scale presentation and collaboration framework installed at the Queensland University of Technology’s (QUT) Cube facility, an interactive facility made up 48 multi-touch screens and very large projected display screens. The CubIT system allows users to upload, interact with and share their own content on the Cube’s display surfaces. This paper outlines the collaborative features of CubIT which are implemented via three user interfaces, a large-screen multi-touch interface, a mobile phone and tablet application and a web-based content management system. Each of these applications plays a different role and supports different interaction mechanisms supporting a wide range of collaborative features including multi-user shared workspaces, drag and drop upload and sharing between users, session management and dynamic state control between different parts of the system.
Resumo:
Inspired by the wonderful properties of some biological composites in nature, we performed molecular dynamics simulations to investigate the mechanical behavior of bicontinuous nanocomposites. Three representative types of bicontinuous composites, which have regular network, random network, and nacre inspired microstructures respectively, were studied and the results were compared with those of a honeycomb nanocomposite with only one continuous phase. It was found that the mechanical strength of nanocomposites in a given direction strongly depends on the connectivity of microstructure in that direction. Directional isotropy in mechanical strength and easy manufacturability favor the random network nanocomposites as a potentially great bioinspired composite with balanced performances. In addition, the tensile strength of random network nanocomposites is less sensitive to the interfacial failure, owing to its super high interface-to-volume ratio and random distribution of internal interfaces. The results provide a useful guideline for design and optimization of advanced nanocomposites with superior mechanical properties.
Resumo:
This paper explores the interfaces between the transnational politics of labour and the experiences of Vietnamese women garment workers both in Vietnam and as migrants to other countries. As the global industries have come to organise much of the contemporary economic system, so too have they crossed national boundaries in search of cheap labour. At the same time enclaves of migrant disadvantage within the multi-ethnic nation-states of the developed world have also provided workers for the manufacture of clothing. In the case of Australia, these workers are mostly home-based and not in factories. In this paper I explore Vietnamese women's different incorporations into the garment industry in various locations – in Australia, in Vietnam, and in American Samoa. In so doing, I provide an analysis of the links between gender, global power relations and the contradictory space of transnational exchange.
Resumo:
The interaction between new two-dimensional carbon allotropes, i.e. graphyne (GP) and graphdiyne (GD), and light metal complex hydrides LiAlH4, LiBH4, and NaAlH4 was studied using density functional theory (DFT) incorporating long range van der Waals dispersion correction. The light metal complex hydrides show much stronger interaction with GP and GP than that with fullerene due to the well defined pore structure. Such strong interactions greatly affect the degree of charge donation from the alkali metal atom to AlH4 or BH4, consequently destabilizing the Al-H or B-H bonds. Compared to the isolated light metal complex hydride, the presence of GP or GD can lead to a significant reduction of the hydrogen removal energy. Most interestingly, the hydrogen removal energies for LiBHx on GP and with GD are found to be lowered at all the stages (x from 4 to 1) whereas the H-removal energy in the third stage is increased for LiBH4 on fullerene. In addition, the presence of uniformly distributed pores on GP and GD is expected to facilitate the dehydrogenation of light metal complex hydrides. The present results highlight new interesting materials to catalyze light metal complex hydrides for potential application as media for hydrogen storage. Since GD has been successfully synthesized in a recent experiment, we hope the present work will stimulate further experimental investigations in this direction.
Resumo:
Background Standard operating procedures state that police officers should not drive while interacting with their mobile data terminal (MDT) which provides in-vehicle information essential to police work. Such interactions do however occur in practice and represent a potential source of driver distraction. The MDT comprises visual output with manual input via touch screen and keyboard. This study investigated the potential for alternative input and output methods to mitigate driver distraction with specific focus on eye movements. Method Nineteen experienced drivers of police vehicles (one female) from the NSW Police Force completed four simulated urban drives. Three drives included a concurrent secondary task: imitation licence plate search using an emulated MDT. Three different interface methods were examined: Visual-Manual, Visual-Voice, and Audio-Voice (“Visual” and “Audio” = output modality; “Manual” and “Voice” = input modality). During each drive, eye movements were recorded using FaceLAB™ (Seeing Machines Ltd, Canberra, ACT). Gaze direction and glances on the MDT were assessed. Results The Visual-Voice and Visual-Manual interfaces resulted in a significantly greater number of glances towards the MDT than Audio-Voice or Baseline. The Visual-Manual and Visual-Voice interfaces resulted in significantly more glances to the display than Audio-Voice or Baseline. For longer duration glances (>2s and 1-2s) the Visual-Manual interface resulted in significantly more fixations than Baseline or Audio-Voice. The short duration glances (<1s) were significantly greater for both Visual-Voice and Visual-Manual compared with Baseline and Audio-Voice. There were no significant differences between Baseline and Audio-Voice. Conclusion An Audio-Voice interface has the greatest potential to decrease visual distraction to police drivers. However, it is acknowledged that an audio output may have limitations for information presentation compared with visual output. The Visual-Voice interface offers an environment where the capacity to present information is sustained, whilst distraction to the driver is reduced (compared to Visual-Manual) by enabling adaptation of fixation behaviour.
Resumo:
Techniques to improve the automated analysis of natural and spontaneous facial expressions have been developed. The outcome of the research has applications in several fields including national security (eg: expression invariant face recognition); education (eg: affect aware interfaces); mental and physical health (eg: depression and pain recognition).
Resumo:
Police in-vehicle systems include a visual output mobile data terminal (MDT) with manual input via touch screen and keyboard. This study investigated the potential for voice-based input and output modalities for reducing subjective workload of police officers while driving. Nineteen experienced drivers of police vehicles (one female) from New South Wales (NSW) Police completed four simulated urban drives. Three drives included a concurrent secondary task: an imitation licence number search using an emulated MDT. Three different interface output-input modalities were examined: Visual-Manual, Visual-Voice, and Audio-Voice. Following each drive, participants rated their subjective workload using the NASA - Raw Task Load Index and completed questions on acceptability. A questionnaire on interface preferences was completed by participants at the end of their session. Engaging in secondary tasks while driving significantly increased subjective workload. The Visual-Manual interface resulted in higher time demand than either of the voice-based interfaces and greater physical demand than the Audio-Voice interface. The Visual-Voice and Audio-Voice interfaces were rated easier to use and more useful than the Visual-Manual interface, although not significantly different from each other. Findings largely echoed those deriving from the analysis of the objective driving performance data. It is acknowledged that under standard procedures, officers should not drive while performing tasks concurrently with certain invehicle policing systems; however, in practice this sometimes occurs. Taking action now to develop voice-based technology for police in-vehicle systems has potential to realise visions for potentially safer and more efficient vehicle-based police work.
Resumo:
This thesis concerns the mathematical model of moving fluid interfaces in a Hele-Shaw cell: an experimental device in which fluid flow is studied by sandwiching the fluid between two closely separated plates. Analytic and numerical methods are developed to gain new insights into interfacial stability and bubble evolution, and the influence of different boundary effects is examined. In particular, the properties of the velocity-dependent kinetic undercooling boundary condition are analysed, with regard to the selection of only discrete possible shapes of travelling fingers of fluid, the formation of corners on the interface, and the interaction of kinetic undercooling with the better known effect of surface tension. Explicit solutions to the problem of an expanding or contracting ring of fluid are also developed.
Resumo:
Layers (about 60-100 μm thick) of almost pure BaCuO2 (BC1), as determined using X-ray diffractometry (XRD) and scanning electron microscopy (SEM), coat the surfaces of YBa2Cu3O7-x (Y123) samples partial melt processed using a single-zone vertical furnace. The actual Cu/Ba ratio of the BC1 phase is 1.2-1.3 as determined using energy dispersive X-ray spectrometry (EDS). The nominally BC1 phase displays an exsolution of BC1.5 or BC2 in the form of thin plates (about 50-100 nm thick) along {100}-type cleavage planes or facets. The exsolved phase also fills cracks within the BC1 layer that require it to be in a molten state at some stage of processing. The samples were influenced by Pt contamination from the supporting wire, which may have stabilised the BC1.5 phase. Many of the Y123 grains have the same morphology as the exsolution domains, and run nearly parallel to the thin plates of the exsolved phases, strongly indicating that Y123 nucleation took place at the interface between the BC1 and the BC1.5 or BC2 exsolved phases. The network of nearly parallel exsolved 'channels' provides a matrix and a mechanism through which a high degree of local texture can be initiated in the material.
Resumo:
3D virtual reality, including the current generation of multi-user virtual worlds, has had a long history of use in education and training, and it experienced a surge of renewed interest with the advent of Second Life in 2003. What followed shortly after were several years marked by considerable hype around the use of virtual worlds for teaching, learning and research in higher education. For the moment, uptake of the technology seems to have plateaued, with academics either maintaining the status quo and continuing to use virtual worlds as they have previously done or choosing to opt out altogether. This paper presents a brief review of the use of virtual worlds in the Australian and New Zealand higher education sector in the past and reports on its use in the sector at the present time, based on input from members of the Australian and New Zealand Virtual Worlds Working Group. It then adopts a forward-looking perspective amid the current climate of uncertainty, musing on future directions and offering suggestions for potential new applications in light of recent technological developments and innovations in the area.
Resumo:
It was demonstrated recently that dramatic changes in the redox behaviour of gold/aqueous solution interfaces may be observed following either cathodic or thermal electrode pretreatment. Further work on the cathodic pretreatment of gold in acid solution revealed that as the activity of the gold surface was increased, its performance as a substrate for hydrogen gas evolution under constant potential conditions deteriorated. The change in activity of the gold atoms at the interface, which was attributed to a hydrogen embrittlement process (the occurrence of the latter was subsequently checked by surface microscopy), was confirmed, as in earlier work, by the appearance of a substantial anodic peak at ca. 0.5 V (RHE) in a post-activation positive sweep. Changes in the catalytic activity of a metal surface reflect the fact that the structure (or topography), thermodynamic activity and electronic properties of a surface are dependent not only on pretreatment but also, in the case of the hydrogen evolution reaction, vary with time during the course of reaction. As will be reported shortly, similar (and often more dramatic) time-dependent behaviour was observed for hydrogen gas evolution on other metal electrodes.
Resumo:
This paper, which was part of a larger study, reports on a survey that explored the perceptions of 69 graduate supervisors regarding issues in supervision from three higher education institutions in Australia. Factors that contribute to student success in higher education research degrees are many and diverse, including a complex dance of student factors, supervisor factors, and their supervisory context factors, and those informed by cultural and language differences. Therefore, a complex system approach using Bayesian network modelling was used to explore how student and/or supervisor factors influence the success of culturally and linguistically diverse (CALD) graduate students in Engineering and IT. Findings suggest that key factors include the experience of supervisors in terms of experience with the Australian higher education system, personal cross-cultural experience.
Resumo:
Digital Human Models (DHM) have been used for over 25 years. They have evolved from simple drawing templates, which are nowadays still used in architecture, to complex and Computer Aided Engineering (CAE) integrated design and analysis tools for various ergonomic tasks. DHM are most frequently used for applications in product design and production planning, with many successful implementations documented. DHM from other domains, as for example computer user interfaces, artificial intelligence, training and education, or the entertainment industry show that there is also an ongoing development towards a comprehensive understanding and holistic modeling of human behavior. While the development of DHM for the game sector has seen significant progress in recent years, advances of DHM in the area of ergonomics have been comparatively modest. As a consequence, we need to question if current DHM systems are fit for the design of future mobile work systems. So far it appears that DHM in Ergonomics are rather limited to some traditional applications. According to Dul et al. (2012), future characteristics of Human Factors and Ergonomics (HFE) can be assigned to six main trends: (1) global change of work systems, (2) cultural diversity, (3) ageing, (4) information and communication technology (ICT), (5) enhanced competiveness and the need for innovation, and; (6) sustainability and corporate social responsibility. Based on a literature review, we systematically investigate the capabilities of current ergonomic DHM systems versus the ‘Future of Ergonomics’ requirements. It is found that DHMs already provide broad functionality in support of trends (1) and (2), and more limited options in regards to trend (3). Today’s DHM provide access to a broad range of national and international databases for correct differentiation and characterization of anthropometry for global populations. Some DHM explicitly address social and cultural modeling of groups of people. In comparison, the trends of growing importance of ICT (4), the need for innovation (5) and sustainability (6) are addressed primarily from a hardware-oriented and engineering perspective and not reflected in DHM. This reflects a persistent separation between hardware design (engineering) and software design (information technology) in the view of DHM – a disconnection which needs to be urgently overcome in the era of software defined user interfaces and mobile devices. The design of a mobile ICT-device is discussed to exemplify the need for a comprehensive future DHM solution. Designing such mobile devices requires an approach that includes organizational aspects as well as technical and cognitive ergonomics. Multiple interrelationships between the different aspects result in a challenging setting for future DHM. In conclusion, the ‘Future of Ergonomics’ pose particular challenges for DHM in regards to the design of mobile work systems, and moreover mobile information access.
Resumo:
This special issue of the Journal of Urban Technology brings together five articles that are based on presentations given at the Street Computing Workshop held on 24 November 2009 in Melbourne in conjunction with the Australian Computer- Human Interaction conference (OZCHI 2009). Our own article introduces the Street Computing vision and explores the potential, challenges, and foundations of this research trajectory. In order to do so, we first look at the currently available sources of information and discuss their link to existing research efforts. Section 2 then introduces the notion of Street Computing and our research approach in more detail. Section 3 looks beyond the core concept itself and summarizes related work in this field of interest. We conclude by introducing the papers that have been contributed to this special issue.