962 resultados para INJURY-INDUCED HYPERTENSION
Resumo:
de Souza ACCP, Volpini RA, Shimizu MH, Sanches TR, Camara NOS, Semedo P, Rodrigues CE, Seguro AC, Andrade L. Erythropoietin prevents sepsis-related acute kidney injury in rats by inhibiting nuclear factor-kappa B and upregulating endothelial nitric oxide synthase. Am J Physiol Renal Physiol 302: F1045-F1054, 2012. First published January 11, 2012; doi:10.1152/ajprenal.00148.2011.-The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks, a mechanism to which NF-kappa B activation is central. Downregulation of endothelial nitric oxide synthase (eNOS) contributes to sepsis-induced endothelial dysfunction. Erythropoietin (EPO) has emerged as a major tissue-protective cytokine in the setting of stress. We investigated the role of EPO in sepsis-related acute kidney injury using a cecal ligation and puncture (CLP) model. Wistar rats were divided into three primary groups: control (sham-operated); CLP; and CLP + EPO. EPO (4,000 IU/kg body wt ip) was administered 24 and 1 h before CLP. Another group of rats received N-nitro-L-arginine methyl ester (L-NAME) simultaneously with EPO administration (CLP + EPO + L-NAME). A fifth group (CLP + EPOtreat) received EPO at 1 and 4 h after CLP. At 48 h postprocedure, CLP + EPO rats presented significantly higher inulin clearance than did CLP and CLP + EPO + L-NAME rats; hematocrit levels, mean arterial pressure, and metabolic balance remained unchanged in the CLP + EPO rats; and inulin clearance was significantly higher in CLP + EPOtreat rats than in CLP rats. At 48 h after CLP, creatinine clearance was significantly higher in the CLP + EPO rats than in the CLP rats. In renal tissue, pre-CLP EPO administration prevented the sepsis-induced increase in macrophage infiltration, as well as preserving eNOS expression, EPO receptor (EpoR) expression, IKK-alpha activation, NF-kappa B activation, and inflammatory cytokine levels, thereby increasing survival. We conclude that this protection, which appears to be dependent on EpoR activation and on eNOS expression, is attributable, in part, to inhibition of the inflammatory response via NF-kappa B downregulation.
Resumo:
de Araujo CC, Silva JD, Samary CS, Guimaraes IH, Marques PS, Oliveira GP, do Carmo LGRR, Goldenberg RC, Bakker-Abreu I, Diaz BL, Rocha NN, Capelozzi VL, Pelosi P, Rocco PRM. Regular and moderate exercise before experimental sepsis reduces the risk of lung and distal organ injury. J Appl Physiol 112: 1206-1214, 2012. First published January 19, 2012; doi:10.1152/japplphysiol.01061.2011.-Physical activity modulates inflammation and immune response in both normal and pathologic conditions. We investigated whether regular and moderate exercise before the induction of experimental sepsis reduces the risk of lung and distal organ injury and survival. One hundred twenty-four BALB/c mice were randomly assigned to two groups: sedentary (S) and trained (T). Animals in T group ran on a motorized treadmill, at moderate intensity, 5% grade, 30 min/day, 3 times a week for 8 wk. Cardiac adaptation to exercise was evaluated using echocardiography. Systolic volume and left ventricular mass were increased in T compared with S group. Both T and S groups were further randomized either to sepsis induced by cecal ligation and puncture surgery (CLP) or sham operation (control). After 24 h, lung mechanics and histology, the degree of cell apoptosis in lung, heart, kidney, liver, and small intestine villi, and interleukin (IL)-6, KC (IL-8 murine functional homolog), IL-1 beta, IL-10, and number of cells in bronchoalveolar lavage (BALF) and peritoneal lavage (PLF) fluids as well as plasma were measured. In CLP, T compared with S groups showed: 1) improvement in survival; 2) reduced lung static elastance, alveolar collapse, collagen and elastic fiber content, number of neutrophils in BALF, PLF, and plasma, as well as lung and distal organ cell apoptosis; and 3) increased IL-10 in BALF and plasma, with reduced IL-6, KC, and IL-1 beta in PLF. In conclusion, regular and moderate exercise before the induction of sepsis reduced the risk of lung and distal organ damage, thus increasing survival.
Resumo:
The aim of this study is to show histological and immunofluorescence analysis of renal parenchyma of agoutis affected by gentamicin-induced renal disease after the infusion of bone marrow mononuclear cells (BMMC) stained with Hoechst (R). Nine agouti's males were divided into three groups: Test group (TG): renal disease by gentamicin induced (n = 3), cell therapy group (CTG): renal disease by gentamicin induced and BMMC infusion (n = 3), and control group (CG): nonrenal disease and BMMC infusion (n = 3). TG and CTG were submitted to the protocol of renal disease induction using weekly application of gentamicin sulfate for 4 months. CG and CTG received a 1 X 108 BMMC stained with Hoechst and were euthanized for kidney examination 21 days after BMMC injection and samples were collected for histology and immunofluorescence analysis. Histological analysis demonstrated typical interstitial lesions in kidney similarly to human disease, as tubular necrosis, glomerular destruction, atrophy tubular, fibrotic areas, and collagen deposition. We conclude that histological analysis suggest a positive application of agouti's as a model for a gentamicin inducing of kidney disease, beyond the immunofluorescence analysis suggest a significant migration of BMMC to sites of renal injury in CTG. Microsc. Res. Tech., 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Despite significant advances in the care of critically ill patients, acute lung injury continues to be a complex problem with high mortality. The present study was designed to characterize early lipopolysaccharide (LPS)-induced pulmonary injury and small interfering RNA targeting focal adhesion kinase (FAK) as a possible therapeutic tool in the septic lung remodeling process. Male Wistar rats were assigned into endotoxemic group and control group. Total collagen deposition was performed 8, 16, and 24 h after LPS injection. Focal adhesion kinase expression, interstitial and vascular collagen deposition, and pulmonary mechanics were analyzed at 24 h. Intravenous injection of small interfering RNA targeting FAK was used to silence expression of the kinase in pulmonary tissue. Focal adhesion kinase, total collagen deposition, and pulmonary mechanics showed increased in LPS group. Types I, III, and V collagen showed increase in pulmonary parenchyma, but only type V increased in vessels 24 h after LPS injection. Focal adhesion kinase silencing prevented lung remodeling in pulmonary parenchyma at 24 h. In conclusion, LPS induced a precocious and important lung remodeling. There was fibrotic response in the lung characterized by increased amount in total and specific-type collagen. These data may explain the frequent clinical presentation during sepsis of reduced lung compliance, oxygen diffusion, and pulmonary hypertension. The fact that FAK silencing was protective against lung collagen deposition underscores the therapeutic potential of FAK targeting by small interfering RNA.
Resumo:
Gestational hypothyroidism is a prevalent disorder in pregnant women. We aimed to investigate the impact of experimental gestational hypothyroidism (EGH) on cardiovascular and autonomic nervous systems (ANS) in the offspring of rats. EGH was induced with methimazole (MMI) 0.02% in drinking water from day 9 of gestation until birth. Sixty day old offspring from MMI-treated dams (OMTD, n = 13) or water-treated dams (OWTD, n = 13) had femoral arteries surgically assessed for the measurements of heart rate (HR), mean (MAP), systolic (SAP) and diastolic arterial pressure (DAP), and spontaneous baroreflex sensitivity (BRS). To investigate the balance of ANS, we established the high (HF) and low frequency (LF) bands of pulse interval (PI) and LF band of SAP spectrum. OMTD had increased MAP (130.2 +/- 2.0 vs 108.8 +/- 3.0 mm Hg, p<0.001), SAP (157.3 +/- 2.9 vs 135.7 +/- 4.5 mm Hg, p<0.001) and DAP (109.7 +/- 1.9 vs 88.4 +/- 2.6 mm Hg, p<0.001) when compared to OWED, and had lower HR (355.1 +/- 8.9 vs 386.8 +/- 9.2 bpm, p<0.05). After spectral analysis of PI and SAP, only LF band of SAP spectrum was higher (7.2 +/- 0.8 vs 4.0 +/- 0.6 mm Hg-2, p<0.01) in OMTD under spontaneous condition. Despite bradycardia, EGH promotes spontaneous hypertension in 60 day old offspring, probably due to increased sympathetic modulation of vessels, which is suggested by the higher LF of SAP. These findings suggest a critical role of maternal THs in the development of fetal cardiovascular and autonomic nervous systems. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
The city of Sao Paulo is located in a subtropical region whose climate exhibits few defined seasons as well as frequent oscillations in temperature and rainfall throughout the year. In addition to interfering with physiological processes, these peculiar climatic dynamics influence the formation of O-3 and its influx into leaves, causing species used as bioindicators in temperate climates to be ineffective here. This study evaluated gas exchange variations in CO2 and H2O and leaf injuries induced by O-3 in Nicotiana tabacum Bel-W3 in relation to oscillations in environmental conditions. Plants were exposed to an O-3-polluted environment for fifteen periods of fourteen days each throughout 2008. Gas exchange and O-3 were higher during the summer and winter but were highly variable in all seasons. Severe injuries occurred during the winter and spring, with significant variation in this parameter being observed throughout the year. An analysis of biotic and abiotic variables revealed complex relationships among them, with great importance of meteorological factors in plant responses. We conclude that under unstable climatic conditions, the relationship between O-3 flux and injury is weak, and the qualitative character of biomonitoring is further confirmed. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.
Resumo:
AIM: To investigate the effects of titanium dioxide (TiO2) nanoparticles (NPTiO2) and microparticles (MPTiO2) on the inflammatory response in the small intestine of mice. METHODS: BI 57/6 male mice received distilled water suspensions containing TiO2 (100 mg/kg body weight) as NPTiO2 (66 nm), or MPTiO2 (260 nm) by gavage for 10 d, once a day; the control group received only distilled water. At the end of the treatment the duodenum, jejunum and ileum were extracted for assessment of cytokines, inflammatory cells and titanium content. The cytokines interleukin (IL)-1b, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17, IL-23, tumor necrosis factor-alpha (TNF-alpha), intracellular interferon-gamma (IFN-gamma) and transforming growth factor-beta (TGF-beta) were evaluated by enzyme-linked immunosorbent assay in segments of jejunum and ileum (mucosa and underlying muscular tissue). CD4(+) and CD8(+) T cells, natural killer cells, and dendritic cells were evaluated in duodenum, jejunum and ileum samples fixed in 10% formalin by immunohistochemistry. The titanium content was determined by inductively coupled plasma atomic emission spectrometry. RESULTS: We found increased levels of T CD4(+) cells (cells/mm(2)) in duodenum: NP 1240 +/- 139.4, MP 1070 +/- 154.7 vs 458 +/- 50.39 (P < 0.01); jejunum: NP 908.4 +/- 130.3, MP 813.8 +/- 103.8 vs 526.6 +/- 61.43 (P < 0.05); and ileum: NP 818.60 +/- 123.0, MP 640.1 +/- 32.75 vs 466.9 +/- 22.4 (P < 0.05). In comparison to the control group, the groups receiving TiO2 showed a statistically significant increase in the levels of the inflammatory cytokines IL-12, IL-4, IL-23, TNF-alpha, IFN-gamma and TGF-beta. The cytokine production was more pronounced in the ileum (mean SE): IL-12: NP 33.98 +/- 11.76, MP 74.11 +/- 25.65 vs 19.06 +/- 3.92 (P < 0.05); IL-4: NP 17.36 +/- 9.96, MP 22.94 +/- 7.47 vs 2.19 +/- 0.65 (P < 0.05); IL-23: NP 157.20 +/- 75.80, MP 134.50 +/- 38.31 vs 22.34 +/- 5.81 (P < 0.05); TNF alpha: NP 3.71 +/- 1.33, MP 5.44 +/- 1.67 vs 0.99 +/- 019 (P < 0.05); IFN gamma: NP 15.85 +/- 9.99, MP 34.08 +/- 11.44 vs 2.81 +/- 0.69 (P < 0.05); and TGF-alpha: NP 780.70 +/- 318.50, MP 1409.00 +/- 502.20 vs 205.50 +/- 63.93 (P < 0.05). CONCLUSION: Our findings indicate that TiO2 particles induce a Th1-mediated inflammatory response in the small bowel in mice. (C) 2012 Baishideng. All rights reserved.
Resumo:
In this study, we investigated the effect of the ruthenium complex [Ru(terpy)(bdq)NO+](3+) (TERPY) on the arterial pressure from renal hypertensive 2 kidney-1 clip (2K-1C) rats, which was compared with sodium nitroprusside (SNP). The most interesting finding was that the intravenous bolus injection of TERPY (2.5, 5.0, 7 mg/kg) had a dose-dependent hypotensive effect only in 2K-1C rats. On the other hand, SNP (35 and 70 mu g/kg) presented a similar hypotensive effect in both normotensive (2K) and 2K-1C although the effect of 70 mu g/kg was >35 mu g/kg. The injection of the nonselective NO-synthase inhibitor N-omega-nitro-L-arginine methyl ester (L-NAME) increased the arterial pressure in 2K and 2K-1C rats with a similar magnitude. After infusion of L-NAME, the hypotensive effect induced by TERPY and SNP was potentiated in both 2K and in 2K-1C rats. The administration of the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl increased the hypotensive effect induced by TERPY or SNP in both 2K and 2K-1C rats. The hypotensive effect induced by TERPY was longer than that produced by SNP. Taken together, our results show that the TERPY has a long-lasting hypotensive effect, which has a dose dependence and higher magnitude in 2K-1C compared with in 2K rats. In comparison with SNP, TERPY is less potent in inducing arterial pressure fall, but it presents a much longer hypotensive effect.
Resumo:
Cyclosporine (CsA) remains an important immunosuppressant for transplantation and for treatment of autoimmune diseases. The most troublesome side effect of CsA is renal injury. Acute CsA-induced nephrotoxicity is characterized by reduced renal blood flow (RBF) and glomerular filtration rate (GFR) due to afferent arteriole vasoconstriction. Annexin A1 (ANXA1) is a potent anti-inflammatory protein with protective effect in renal ischemia/reperfusion injury. Here we study the effects of ANXA1 treatment in an experimental model of acute CsA nephrotoxicity. Salt-depleted rats were randomized to treatment with VH (vehicles 1 mL/kg body weight/day), ANXA1 (Ac2-26 peptide 1 mg/kg body weight/day intraperitoneally), CsA (20 mg/kg body weight/day subcutaneously) and CsA + ANXA1 (combination) for seven days. We compared renal function and hemodynamics, renal histopathology, renal tissue macrophage infiltration and renal ANXA1 expression between the four groups. CsA significantly impaired GFR and RBF, caused tubular dilation and macrophage infiltration and increased ANXA1 renal tissue expression. Treatment with ANXA1 attenuated CSA-induced hemodynamic changes, tubular injury and macrophage infiltration. ANXA1 treatment attenuated renal hemodynamic injury and inflammation in an acute CsA nephrotoxicity model.
Resumo:
beta-Adrenoceptor (beta-AR)-mediated relaxation plays an important role in the regulation of vascular tone. beta-AR-mediated vascular relaxation is reduced in various disease states and aging. We hypothesized that beta-AR-mediated vasodilatation is impaired in DOCA-salt hypertension due to alterations in the cAMP pathway. beta-AR-mediated relaxation was determined in small mesenteric arteries from DOCA-salt hypertensive and control uninephrectomized (Uni) rats. To exclude nitric oxide (NO) and cyclooxygenase (COX) pathways, relaxation responses were determined in the presence of L-NNA and indomethacin, NO synthase inhibitor and COX inhibitors, respectively. Isoprenaline (ISO)-induced relaxation was reduced in arteries from DOCA-salt compared to Uni rats. Protein kinase A (PKA) inhibitors (H89 or Rp-cAMPS) or adenylyl cyclase inhibitor (SQ22536) did not abolish the difference in ISO-induced relaxation between the groups. Forskolin (adenylyl cyclase activator)-induced relaxation was similar between the groups. The inhibition of IKCa/SKCa channels (TRAM-34 plus UCL1684) or BKCa channels (iberiotoxin) reduced ISO-induced relaxation only in Uni rats and abolished the relaxation differences between the groups. The expression of SKCa channel was decreased in DOCA-salt arteries. The expression of BKCa channel a subunit was increased whereas the expression of BKCa channel p subunit was decreased in DOCA-salt arteries. The expression of receptor for activated C kinase 1 (RACK1), which is a binding protein for BKG, channel and negatively modulates its activity, was increased in DOCA-salt arteries. These results suggest that the impairment of beta-AR-mediated relaxation in DOCA-salt mesenteric arteries may be attributable to altered IKCa/SKCa and/or BKCa channels activities rather than cAMP/PKA pathway. Impaired beta-AR-stimulated BKCa channel activity may be due to the imbalance between its subunit expressions and RACK1 upregulation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: The causes of death on long-term mortality after acute kidney injury (AKI) have not been well studied. The purpose of the study was to evaluate the role of comorbidities and the causes of death on the long-term mortality after AKI. Methodology/Principal Findings: We retrospectively studied 507 patients who experienced AKI in 2005-2006 and were discharged free from dialysis. In June 2008 (median: 21 months after AKI), we found that 193 (38%) patients had died. This mortality is much higher than the mortality of the population of Sao Paulo City, even after adjustment for age. A multiple survival analysis was performed using Cox proportional hazards regression model and showed that death was associated with Khan's index indicating high risk [adjusted hazard ratio 2.54 (1.38-4.66)], chronic liver disease [1.93 (1.15-3.22)], admission to non-surgical ward [1.85 (1.30-2.61)] and a second AKI episode during the same hospitalization [1.74 (1.12-2.71)]. The AKI severity evaluated either by the worst stage reached during AKI (P=0.20) or by the need for dialysis (P=0.12) was not associated with death. The causes of death were identified by a death certificate in 85% of the non-survivors. Among those who died from circulatory system diseases (the main cause of death), 59% had already suffered from hypertension, 34% from diabetes, 47% from heart failure, 38% from coronary disease, and 66% had a glomerular filtration rate <60 previous to the AKI episode. Among those who died from neoplasms, 79% already had the disease previously. Conclusions: Among AKI survivors who were discharged free from dialysis the increased long-term mortality was associated with their pre-existing chronic conditions and not with the severity of the AKI episode. These findings suggest that these survivors should have a medical follow-up after hospital discharge and that all efforts should be made to control their comorbidities.
Resumo:
Objective: To assess safety and efficacy of sitaxsentan 50 and 100 mg in patients with pulmonary arterial hypertension (PAH). Background: Sitaxsentan is a highly selective endothelin-A receptor antagonist that was recently withdrawn by the manufacturer because of a pattern of idiosyncratic liver injury. Methods: Before sitaxsentan withdrawal, this 18-week double-blind, placebo-controlled study randomized patients with PAH to receive placebo or sitaxsentan 50 or 100 mg once daily. The primary efficacy endpoint was change from baseline in 6-min walk distance (6MWD) at week 18. Changes in World Health Organization (WHO) functional class and time to clinical worsening (TTCW) were secondary endpoints. The primary efficacy analysis was powered for sitaxsentan 100 mg versus placebo. Results: Of 98 randomized patients, 61% were WHO functional class II at baseline. Improvement from baseline to week 18 in 6MWD occurred with sitaxsentan 100 but not 50 mg; a strong placebo effect was observed. At week 18, WHO functional class was improved or maintained in more patients receiving sitaxsentan 100 mg than placebo (P = 0.038); 0% versus 12% of patients deteriorated, respectively. TTCW was not significantly different for 100-mg sitaxsentan patients than placebo (P = 0.090). Adverse events (AEs) occurring more frequently with sitaxsentan (50 or 100 mg) included headache, peripheral edema, dizziness, nausea, extremity pain, and fatigue; most AEs were of mild or moderate severity. Conclusion: Sitaxsentan 100 mg improved functional class but not 6MWD in PAH patients who were mostly WHO functional class II at baseline. No patient receiving sitaxsentan 100 mg experienced clinical worsening; sitaxsentan was well tolerated. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Th1/Th2 balance represents an important factor in the pathogenesis of renal ischemia-reperfusion injury (IRI). In addition, IRI causes a systemic inflammation that can affect other tissues, such as the lungs. To investigate the ability of renal IRI to modulate pulmonary function in a specific model of allergic inflammation, C57Bl/6 mice were immunized with ovalbumin/albumen on days 0 and 7 and challenged with an ovalbumin (OA) aerosol on days 14 and 21. After 24 h of the second antigen challenge, the animals were subjected to 45 minutes of ischemia. After 24 h of reperfusion, the bronchoalveolar lavage (BAL) fluid, blood and lung tissue were collected for analysis. Serum creatinine levels increased in both allergic and non-immunized animals subjected to IRI. However, BAL analysis showed a reduction in the total cells (46%) and neutrophils (58%) compared with control allergic animals not submitted to IRI. In addition, OA challenge induced the phosphorylation of ERK and Akt and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung homogenates. After renal IRI, the phosphorylation of ERK and expression of COX-2 and iNOS were markedly reduced; however, there was no difference in the phosphorylation of Akt between sham and ischemic OA-challenged animals. Mucus production was also reduced in allergic mice after renal IRI. IL-4, IL-5 and IL-13 were markedly down-regulated in immunized/challenged mice subjected to IRI. These results suggest that renal IRI can modulate lung allergic inflammation, probably by altering the Th1/Th2 balance and, at least in part, by changing cellular signal transduction factors. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Cisplatin is a highly effective chemotherapeutic drug; however, its use is limited by nephrotoxicity. Studies showed that the renal injury produced by cisplatin involves oxidative stress and cell death mediated by apoptosis and necrosis in proximal tubular cells. The use of antioxidants to decrease cisplatin-induced renal cell death was suggested as a potential therapeutic measure. In this study the possible protective effects of carvedilol, a beta blocker with antioxidant activity, was examined against cisplatin-induced apoptosis in HK-2 human kidney proximal tubular cells. The mitochondrial events involved in this protection were also investigated. Four groups were used: controls (C), cisplatin alone at 25 mu M (CIS), cisplatin 25 mu M plus carvedilol 50 mu M (CV + CIS), and carvedilol alone 50 mu M (CV). Cell viability, apoptosis, caspase-9, and caspase-3 were determined. Data demonstrated that carvedilol effectively increased cell viability and minimized caspase activation and apoptosis in HK-2 cells, indicating this may be a promising drug to reduce nephrotoxicity induced by cisplatin.