841 resultados para INFLAMMATORY MEDIATORS
Resumo:
We examined the relationship between blood antioxidant enzyme activities, indices of inflammatory status and a number of lifestyle factors in the Caerphilly prospective cohort study of ischaemic heart disease. The study began in 1979 and is based on a representative male population sample. Initially 2512 men were seen in phase I, and followed-up every 5 years in phases II and III; they have recently been seen in phase IV. Data on social class, smoking habit, alcohol consumption were obtained by questionnaire, and body mass index was measured. Antioxidant enzyme activities and indices of inflammatory status were estimated by standard techniques. Significant associations were observed for: age with α-1-antichymotrypsin (p<0.0001) and with caeruloplasmin, both protein and oxidase (p<0.0001); smoking habit with α-1-antichymotrypsin (p<0.0001), with caeruloplasmin, both protein and oxidase (p<0.0001) and with glutathione peroxidose (GPX) (p<0.0001); social class with α-1-antichymotrypsin (p<0.0001), with caeruloplasmin both protein (p<0.001) and oxidase (p<0.01) and with GPX (p<0.0001); body mass index with α-1-antichymotrypsin (p<0.0001) and with caeruloplasmin protein (p<0.001). There was no significant association between alcohol consumption and any of the blood enzymes measured. Factor analysis produced a three-factor model (explaining 65.9% of the variation in the data set) which appeared to indicate close inter-relationships among antioxidants.
Resumo:
Exacerbated sensitivity to mechanical stimuli that are normally innocuous or mildly painful (mechanical allodynia and hyperalgesia) occurs during inflammation and underlies painful diseases. Proteases that are generated during inflammation and disease cleave protease-activated receptor 2 (PAR2) on afferent nerves to cause mechanical hyperalgesia in the skin and intestine by unknown mechanisms. We hypothesized that PAR2-mediated mechanical hyperalgesia requires sensitization of the ion channel transient receptor potential vanilloid 4 (TRPV4). Immunoreactive TRPV4 was coexpressed by rat dorsal root ganglia (DRG) neurons with PAR2, substance P (SP) and calcitonin gene-related peptide (CGRP), mediators of pain transmission. In PAR2-expressing cell lines that either naturally expressed TRPV4 (bronchial epithelial cells) or that were transfected to express TRPV4 (HEK cells), pretreatment with a PAR2 agonist enhanced Ca2+ and current responses to the TRPV4 agonists phorbol ester 4alpha-phorbol 12,13-didecanoate (4alphaPDD) and hypotonic solutions. PAR2-agonist similarly sensitized TRPV4 Ca2+ signals and currents in DRG neurons. Antagonists of phospholipase Cbeta and protein kinases A, C and D inhibited PAR2-induced sensitization of TRPV4 Ca2+ signals and currents. 4alphaPDD and hypotonic solutions stimulated SP and CGRP release from dorsal horn of rat spinal cord, and pretreatment with PAR2 agonist sensitized TRPV4-dependent peptide release. Intraplantar injection of PAR2 agonist caused mechanical hyperalgesia in mice and sensitized pain responses to the TRPV4 agonists 4alphaPDD and hypotonic solutions. Deletion of TRPV4 prevented PAR2 agonist-induced mechanical hyperalgesia and sensitization. This novel mechanism, by which PAR2 activates a second messenger to sensitize TRPV4-dependent release of nociceptive peptides and induce mechanical hyperalgesia, may underlie inflammatory hyperalgesia in diseases where proteases are activated and released.
Resumo:
Most of the human population in the western world has access to unlimited calories and leads an increasingly sedentary lifestyle. The propensity to undertake voluntary exercise or indulge in spontaneous physical exercise, which might be termed "exercise salience", is drawing increased scientific attention. Despite its genetic aspects, this complex behaviour is clearly modulated by the environment and influenced by physiological states. Inflammation is often overlooked as one of these conditions even though it is known to induce a state of reduced mobility. Chronic subclinical inflammation is associated with the metabolic syndrome; a largely lifestyle-induced disease which can lead to decreased exercise salience. The result is a vicious cycle that increases oxidative stress and reduces metabolic flexibility and perpetuates the disease state. In contrast, hormetic stimuli can induce an anti-inflammatory phenotype, thereby enhancing exercise salience, leading to greater biological fitness and improved functional longevity. One general consequence of hormesis is upregulation of mitochondrial function and resistance to oxidative stress. Examples of hormetic factors include calorie restriction, extreme environmental temperatures, physical activity and polyphenols. The hormetic modulation of inflammation, and thus, exercise salience, may help to explain the highly heterogeneous expression of voluntary exercise behaviour and therefore body composition phenotypes of humans living in similar obesogenic environments.
Resumo:
The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity, increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a metabolic balance and help to adapt the phenotype to a modern lifestyle.
Resumo:
BACKGROUND: Observed associations between increased fruit and vegetable (F&V) consumption, particularly those F&Vs that are rich in flavonoids, and vascular health improvements require confirmation in adequately powered randomized controlled trials. OBJECTIVE: This study was designed to measure the dose-response relation between high-flavonoid (HF), low-flavonoid (LF), and habitual F&V intakes and vascular function and other cardiovascular disease (CVD) risk indicators. DESIGN: A single-blind, dose-dependent, parallel randomized controlled dietary intervention study was conducted. Male and female low-F&V consumers who had a ≥1.5-fold increased risk of CVD (n = 174) were randomly assigned to receive an HF F&V, an LF F&V, or a habitual diet, with HF and LF F&V amounts sequentially increasing by 2, 4, and 6 (+2, +4, and +6) portions/d every 6 wk over habitual intakes. Microvascular reactivity (laser Doppler imaging with iontophoresis), arterial stiffness [pulse wave velocity, pulse wave analysis (PWA)], 24-h ambulatory blood pressure, and biomarkers of nitric oxide (NO), vascular function, and inflammation were determined at baseline and at 6, 12, and 18 wk. RESULTS: In men, the HF F&V diet increased endothelium-dependent microvascular reactivity (P = 0.017) with +2 portions/d (at 6 wk) and reduced C-reactive protein (P = 0.001), E-selectin (P = 0.0005), and vascular cell adhesion molecule (P = 0.0468) with +4 portions/d (at 12 wk). HF F&Vs increased plasma NO (P = 0.0243) with +4 portions/d (at 12 wk) in the group as a whole. An increase in F&Vs, regardless of flavonoid content in the groups as a whole, mitigated increases in vascular stiffness measured by PWA (P = 0.0065) and reductions in NO (P = 0.0299) in the control group. CONCLUSION: These data support recommendations to increase F&V intake to ≥6 portions daily, with additional benefit from F&Vs that are rich in flavonoids, particularly in men with an increased risk of CVD. This trial was registered at www.controlled-trials.com as ISRCTN47748735.
Resumo:
BACKGROUND: Dendritic cells regulate immune responses to microbial products and play a key role in ulcerative colitis (UC) pathology. We determined the immunomodulatory effects of probiotic strain Lactobacillus casei Shirota (LcS) on human DC from healthy controls and active UC patients. METHODS: Human blood DC from healthy controls (control-DC) and UC patients (UC-DC) were conditioned with heat-killed LcS and used to stimulate allogeneic T cells in a 5-day mixed leucocyte reaction. RESULTS: UC-DC displayed a reduced stimulatory capacity for T cells (P < 0.05) and enhanced expression of skin-homing markers CLA and CCR4 on stimulated T cells (P < 0.05) that were negative for gut-homing marker β7. LcS treatment restored the stimulatory capacity of UC-DC, reflecting that of control-DC. LcS treatment conditioned control-DC to induce CLA on T cells in conjunction with β7, generating a multihoming profile, but had no effects on UC-DC. Finally, LcS treatment enhanced DC ability to induce TGFβ production by T cells in controls but not UC patients. CONCLUSIONS: We demonstrate a systemic, dysregulated DC function in UC that may account for the propensity of UC patients to develop cutaneous manifestations. LcS has multifunctional immunoregulatory activities depending on the inflammatory state; therapeutic effects reported in UC may be due to promotion of homeostasis.
Resumo:
Purpose Wholegrain (WG) consumption is associated with reduced risk of cardiovascular disease, but clinical data on inflammation and immune function is either conflicting or limited. The objective of this study was to assess the impact of increasing WG consumption to at least 80 g/d on markers of inflammation and glucose metabolism and on phenotypic and functional aspects of the immune system, in healthy, middle-aged adults with low habitual WG intake. Methods Subjects consumed a diet high in WG (> 80 g/d) or low in WG (< 16 g/d, refined grain diet) in a crossover study, with 6-week intervention periods, separated by a 4-week washout. Adherence to the dietary regimes was achieved by dietary advice and provision of a range of food products, with compliance verified through analysis of plasma alkylresorcinols (ARs). Results On the WG intervention, WG consumption reached 168 g/d (P < 0.001), accompanied by an increase in plasma ARs (P < 0.001) and fibre intake (P < 0.001), without affecting other aspects of dietary intake. On the WG arm there were trends for lower ex vivo activation of CD4+ T cells and circulating concentrations of IL-10, C-reactive protein, C-peptide, insulin and plasminogen activator inhibitor-1. The percentage of CD4+ central memory T cells and circulating levels of adipsin tended to increase during the WG intervention. Conclusions Despite the dramatic increase in WG consumption, there were no effects on phenotypic or functional immune parameters, markers of inflammation or metabolic markers.
Resumo:
BACKGROUND: Brain inflammation has been recognized as a complex phenomenon with numerous related aspects. In addition to the very well-described neurodegenerative effect of inflammation, several studies suggest that inflammatory signals exert a potentially positive influence on neural stem cell proliferation, migration and differentiation. Tumor necrosis factor alpha (TNF-alpha) is one of the best-characterized mediators of inflammation. To date, conclusions about the action of TNF on neural stem or progenitor cells (NSCs, NPCs) have been conflicting. TNF seems to activate NSC proliferation and to inhibit their differentiation into NPCs. The purpose of the present study was to analyze the molecular signal transduction mechanisms induced by TNF and resulting in NSC proliferation. RESULTS: Here we describe for the first time the TNF-mediated signal transduction cascade in neural stem cells (NSCs) that results in increased proliferation. Moreover, we demonstrate IKK-alpha/beta-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment. The significant increase in proliferation in TNF-treated cells was indicated by increased neurosphere volume, increased bromodeoxyuridin (BrdU) incorporation and a higher total cell number. Furthermore, TNF strongly activated nuclear factor-kappa B (NF-kappaB) as measured by reporter gene assays and by an activity-specific antibody. Proliferation of control and TNF-treated NSCs was strongly inhibited by expression of the NF-kappaB super-repressor IkappaB-AA1. Pharmacological blockade of IkappaB ubiquitin ligase activity led to comparable decreases in NF-kappaB activity and proliferation. In addition, IKK-beta gene product knock-down via siRNA led to diminished NF-kappaB activity, attenuated cyclin D1 expression and finally decreased proliferation. In contrast, TGFbeta-activated kinase 1 (TAK-1) is partially dispensable for TNF-mediated and endogenous proliferation. Understanding stem cell proliferation is crucial for future regenerative and anti-tumor medicine. CONCLUSION: TNF-mediated activation of IKK-beta resulted in activation of NF-kappaB and was followed by up-regulation of the bona-fide target gene cyclin D1. Activation of the canonical NF-kappaB pathway resulted in strongly increased proliferation of NSCs.
Resumo:
Although the adult brain contains neural stem cells (NSCs) that generate new neurons throughout life, these astrocyte-like populations are restricted to two discrete niches. Despite their terminally differentiated phenotype, adult parenchymal astrocytes can re-acquire NSC-like characteristics following injury, and as such, these 'reactive' astrocytes offer an alternative source of cells for central nervous system (CNS) repair following injury or disease. At present, the mechanisms that regulate the potential of different types of astrocytes are poorly understood. We used in vitro and ex vivo astrocytes to identify candidate pathways important for regulation of astrocyte potential. Using in vitro neural progenitor cell (NPC)-derived astrocytes, we found that exposure of more lineage-restricted astrocytes to either tumor necrosis factor alpha (TNF-α) (via nuclear factor-κB (NFκB)) or the bone morphogenetic protein (BMP) inhibitor, noggin, led to re-acquisition of NPC properties accompanied by transcriptomic and epigenetic changes consistent with a more neurogenic, NPC-like state. Comparative analyses of microarray data from in vitro-derived and ex vivo postnatal parenchymal astrocytes identified several common pathways and upstream regulators associated with inflammation (including transforming growth factor (TGF)-β1 and peroxisome proliferator-activated receptor gamma (PPARγ)) and cell cycle control (including TP53) as candidate regulators of astrocyte phenotype and potential. We propose that inflammatory signalling may control the normal, progressive restriction in potential of differentiating astrocytes as well as under reactive conditions and represent future targets for therapies to harness the latent neurogenic capacity of parenchymal astrocytes.
Resumo:
The C-type lectin-like receptor 2 (CLEC-2) activates platelets through Src and Syk tyrosine kinases via a single cytoplasmic YxxL motif known as a hem immunoreceptor tyrosine-based activation motif (hemITAM). Here, we demonstrate using sucrose gradient ultracentrifugation and methyl-beta-cyclodextrin treatment that CLEC-2 translocates to lipid rafts upon ligand engagement and that translocation is essential for hemITAM phosphorylation and signal initiation. HemITAM phosphorylation, but not translocation, is also critically dependent on actin polymerization, Rac1 activation, and release of ADP and thromboxane A(2) (TxA(2)). The role of ADP and TxA(2) in mediating phosphorylation is dependent on ligand engagement and rac activation but is independent of platelet aggregation. In contrast, tyrosine phosphorylation of the GPVI-FcRgamma-chain ITAM, which has 2 YxxL motifs, is independent of actin polymerization and secondary mediators. These results reveal a unique series of proximal events in CLEC-2 phosphorylation involving actin polymerization, secondary mediators, and Rac activation.
Resumo:
Pro-inflammatory cytokines may be important in the pathophysiological responses of the heart. We investigated the activation of the three mitogen-activated protein kinase (MAPK) subfamilies ¿c-Jun N-terminal kinases (JNKs), p38-MAPKs and extracellularly-responsive kinases (ERKs) by interleukin-1 beta (IL-1 beta) or tumour necrosis factor alpha (TNF alpha) in primary cultures of myocytes isolated from neonatal rat ventricles. Both cytokines stimulated a rapid (maximal within 10 min) increase in JNK activity. Although activation of JNKs by IL-1 beta was transient returning to control values within 1 h, the response to TNF alpha was sustained. IL-1 beta and TNF alpha also stimulated p38-MAPK phosphorylation, but the response to IL-1 beta was consistently greater than TNF alpha. Both cytokines activated ERKs, but to a lesser degree than that induced by phorbol esters. The transcription factors, c-Jun and ATF2, are phosphorylated by the MAPKs and are implicated in the upregulation of c-Jun. IL-1 beta and TNF alpha stimulated the phosphorylation of c-Jun and ATF2. However, IL-1 beta induced a greater increase in c-Jun protein. Inhibitors of protein kinase C (PKC) (Ro318220, GF109203X) and the ERK cascade (PD98059) attenuated the increase in c-Jun induced by IL-1 beta, but LY294002 (an inhibitor of phosphatidylinositol 3' kinase) and SB203580 (an inhibitor of p38-MAPK, which also inhibits certain JNK isoforms) had no effect. These data illustrate that some of the pathological effects of IL-1 beta and TNF alpha may be mediated through the MAPK cascades, and that the ERK cascade, rather than JNKs or p38-MAPKs, are implicated in the upregulation of c-Jun by IL-1 beta.
Resumo:
The leaves of the olive plant (Olea europaea) are rich in polyphenols, of which oleuropein and hydroxytyrosol (HT) are most characteristic. Such polyphenols have been demonstrated to favourably modify a variety of cardiovascular risk factors. The aim of the present intervention was to investigate the influence of olive leaf extract (OLE) on vascular function and inflammation in a postprandial setting and to link physiological outcomes with absorbed phenolics. A randomised, double-blind, placebo-controlled, cross-over, acute intervention trial was conducted with eighteen healthy volunteers (nine male, nine female), who consumed either OLE (51 mg oleuropein; 10mg HT), or a matched control (separated by a 4-week wash out) on a single occasion. Vascular function was measured by digital volume pulse (DVP), while blood collected at baseline, 1, 3 and 6 h was cultured for 24 h in the presence of lipopolysaccharide in order to investigate effects on cytokine production. Urine was analysed for phenolic metabolites by HPLC. DVP-stiffness index and ex vivo IL-8 production were significantly reduced (P < 0.05) after consumption of OLE compared to the control. These effects were accompanied by the excretion of several phenolic metabolites, namely HT and oleuropein derivatives, which peaked in urine after 8-24 h. The present study provides the first evidence that OLE positively modulates vascular function and IL-8 production in vivo, adding to growing evidence that olive phenolics could be beneficial for health.
Resumo:
Background— T NADPH oxidase, by generating reactive oxygen species, is involved in the pathophysiology of many cardiovascular diseases and represents a therapeutic target for the development of novel drugs. A single-nucleotide polymorphism (SNP) C242T of the p22phox subunit of NADPH oxidase has been reported to be negatively associated with coronary heart disease (CHD) and may predict disease prevalence. However, the underlying mechanisms remain unknown. Methods and Results— Using computer molecular modelling we discovered that C242T SNP causes significant structural changes in the extracellular loop of p22phox and reduces its interaction stability with Nox2 subunit. Gene transfection of human pulmonary microvascular endothelial cells showed that C242T p22phox reduced significantly Nox2 expression but had no significant effect on basal endothelial O2.- production or the expression of Nox1 and Nox4. When cells were stimulated with TNFα (or high glucose), C242T p22phox inhibited significantly TNFα-induced Nox2 maturation, O2.- production, MAPK and NFκB activation and inflammation (all p<0.05). These C242T effects were further confirmed using p22phox shRNA engineered HeLa cells and Nox2-/- coronary microvascular endothelial cells. Clinical significance was investigated using saphenous vein segments from non CHD subjects after phlebectomies. TT (C242T) allele was common (prevalence of ~22%) and compared to CC, veins bearing TT allele had significantly lower levels of Nox2 expression and O2.- generation in response to high glucose challenge. Conclusions— C242T SNP causes p22phox structural changes that inhibit endothelial Nox2 activation and oxidative response to TNFα or high glucose stimulation. C242T SNP may represent a natural protective mechanism against inflammatory cardiovascular diseases.