866 resultados para INDEPENDENT COMPONENT ANALYSIS (ICA)
Resumo:
Los factores de riesgo para el desarrollo de eventos cardiometabólicos, constituyen un set de variables útiles como predictores de enfermedades cardiovasculares y metabólicas. Uno de los factores de riesgo que recibe mayor atención en la deteccion y prevencion de eventos cardiometabolicos, es la obesidad y la herramienta más común para diagnosticarla es el índice de masa corporal. Sin embargo, existen imprecisiones y sesgos en su concepto actual y en la forma de medirla. Nuevas alternativas de valoracion y tamizaje deben incluir porcentaje de grasa corporal y su distribución, dada la relevancia que adquiere la adiposidad en la definicion de obesidad y por ende en la mejoría del pronóstico de eventos cardiometabólicos. Los entornos laborales son ambientes vulnerables que se beneficiarían ampliamente de la aplicación de estas nuevas alternativas para predecir e intervenir tempranamente el riesgo cardiometabólico desde el correcto tamizaje de obesidad, dado el volumen poblacional que se puede abordar.
Resumo:
Antecedentes: El interés en las enfermedades autoinmunes (EA) y su desenlace en la unidad de cuidado intensivo (UCI) han incrementado debido al reto clínico que suponen para el diagnóstico y manejo, debido a que la mortalidad en UCI fluctúa entre el 17 – 55 %. El siguiente trabajo representa la experiencia de un año de nuestro grupo en un hospital de tercer nivel. Objetivo: Identificar factores asociados a mortalidad particulares de los pacientes con enfermedades autoinmunes que ingresan a una UCI, de un hospital de tercer nivel en Bogotá, Colombia. Métodos: El uso de análisis de componentes principales basado en el método descriptivo multivariado y análisis de múltiple correspondencia fue realizado para agrupar varias variables relacionadas con asociación significativa y contexto clínico común. Resultados: Cincuenta pacientes adultos con EA con una edad promedio de 46,7 ± 17,55 años fueron evaluados. Los dos diagnósticos más comunes fueron lupus eritematoso sistémico y esclerosis sistémica, con una frecuencia de 45% y 20% de los pacientes respectivamente. La principal causa de admisión en la UCI fue la infección seguido de actividad aguda de la EA, 36% y 24% respectivamente. La mortalidad durante la estancia en UCI fue del 24%. El tiempo de hospitalización antes de la admisión a la UCI, el choque, soporte vasopresor, ventilación mecánica, sepsis abdominal, Glasgow bajo y plasmaféresis fueron factores asociados con mortalidad. Dos fenotipos de variables fueron definidos relacionadas con tiempo en la UCI y medidas de soporte en UCI, las cuales fueron asociadas supervivencia y mortalidad. Conclusiones: La identificación de factores individuales y grupos de factores por medio del análisis de componentes principales permitirá la implementación de medidas terapéutica de manera temprana y agresiva en pacientes con EA en la UCI para evitar desenlaces fatales.
Resumo:
A comparision of the local effects of the basis set superposition error (BSSE) on the electron densities and energy components of three representative H-bonded complexes was carried out. The electron densities were obtained with Hartee-Fock and density functional theory versions of the chemical Hamiltonian approach (CHA) methodology. It was shown that the effects of the BSSE were common for all complexes studied. The electron density difference maps and the chemical energy component analysis (CECA) analysis confirmed that the local effects of the BSSE were different when diffuse functions were present in the calculations
Resumo:
This thesis deals with the so-called Basis Set Superposition Error (BSSE) from both a methodological and a practical point of view. The purpose of the present thesis is twofold: (a) to contribute step ahead in the correct characterization of weakly bound complexes and, (b) to shed light the understanding of the actual implications of the basis set extension effects in the ab intio calculations and contribute to the BSSE debate. The existing BSSE-correction procedures are deeply analyzed, compared, validated and, if necessary, improved. A new interpretation of the counterpoise (CP) method is used in order to define counterpoise-corrected descriptions of the molecular complexes. This novel point of view allows for a study of the BSSE-effects not only in the interaction energy but also on the potential energy surface and, in general, in any property derived from the molecular energy and its derivatives A program has been developed for the calculation of CP-corrected geometry optimizations and vibrational frequencies, also using several counterpoise schemes for the case of molecular clusters. The method has also been implemented in Gaussian98 revA10 package. The Chemical Hamiltonian Approach (CHA) methodology has been also implemented at the RHF and UHF levels of theory for an arbitrary number interacting systems using an algorithm based on block-diagonal matrices. Along with the methodological development, the effects of the BSSE on the properties of molecular complexes have been discussed in detail. The CP and CHA methodologies are used for the determination of BSSE-corrected molecular complexes properties related to the Potential Energy Surfaces and molecular wavefunction, respectively. First, the behaviour of both BSSE-correction schemes are systematically compared at different levels of theory and basis sets for a number of hydrogen-bonded complexes. The Complete Basis Set (CBS) limit of both uncorrected and CP-corrected molecular properties like stabilization energies and intermolecular distances has also been determined, showing the capital importance of the BSSE correction. Several controversial topics of the BSSE correction are addressed as well. The application of the counterpoise method is applied to internal rotational barriers. The importance of the nuclear relaxation term is also pointed out. The viability of the CP method for dealing with charged complexes and the BSSE effects on the double-well PES blue-shifted hydrogen bonds is also studied in detail. In the case of the molecular clusters the effect of high-order BSSE effects introduced with the hierarchical counterpoise scheme is also determined. The effect of the BSSE on the electron density-related properties is also addressed. The first-order electron density obtained with the CHA/F and CHA/DFT methodologies was used to assess, both graphically and numerically, the redistribution of the charge density upon BSSE-correction. Several tools like the Atoms in Molecules topologycal analysis, density difference maps, Quantum Molecular Similarity, and Chemical Energy Component Analysis were used to deeply analyze, for the first time, the BSSE effects on the electron density of several hydrogen bonded complexes of increasing size. The indirect effect of the BSSE on intermolecular perturbation theory results is also pointed out It is shown that for a BSSE-free SAPT study of hydrogen fluoride clusters, the use of a counterpoise-corrected PES is essential in order to determine the proper molecular geometry to perform the SAPT analysis.
Resumo:
The North Atlantic Oscillation (NAO) is an important large-scale atmospheric circulation that influences the European countries climate. This study evaluated NAO impact in air quality in Porto Metropolitan Area (PMA), Portugal, for the period 2002-2006. NAO, air pollutants and meteorological data were statistically analyzed. All data were obtained from PMA Weather Station, PMA Air Quality Stations and NOAA analysis. Two statistical methods were applied in different time scale : principal component and correlation coefficient. Annual time scale, using multivariate analysis (PCA, principal component analysis), were applied in order to identified positive and significant association between air pollutants such as PM10, PM2.5, CO, NO and NO2, with NAO. On the other hand, the correlation coefficient using seasonal time scale were also applied to the same data. The results of PCA analysis present a general negative significant association between the total precipitation and NAO, in Factor 1 and 2 (explaining around 70% of the variance), presented in the years of 2002, 2004 and 2005. During the same years, some air pollutants (such as PM10, PM2.5, SO2, NOx and CO) present also a positive association with NAO. The O3 shows as well a positive association with NAP during 2002 and 2004, at 2nd Factor, explaining 30% of the variance. From the seasonal analysis using correlation coefficient, it was found significant correlation between PM10 (0.72., p<0.05, in 2002), PM2.5 (0 74, p<0.05, in 2004), and SO2 (0.78, p<0.01, in 2002) with NAO during March-December (no winter period) period. Significant associations between air pollutants and NAO were also verified in the winter period (December to April) mainly with ozone (2005, r=-0.55, p.<0.01). Once that human health and hospital morbidities may be affected by air pollution, the results suggest that NAO forecast can be an important tool to prevent them, in the Iberian Peninsula and specially Portugal.
Resumo:
This workshop paper reports recent developments to a vision system for traffic interpretation which relies extensively on the use of geometrical and scene context. Firstly, a new approach to pose refinement is reported, based on forces derived from prominent image derivatives found close to an initial hypothesis. Secondly, a parameterised vehicle model is reported, able to represent different vehicle classes. This general vehicle model has been fitted to sample data, and subjected to a Principal Component Analysis to create a deformable model of common car types having 6 parameters. We show that the new pose recovery technique is also able to operate on the PCA model, to allow the structure of an initial vehicle hypothesis to be adapted to fit the prevailing context. We report initial experiments with the model, which demonstrate significant improvements to pose recovery.
Resumo:
The SCoTLASS problem-principal component analysis modified so that the components satisfy the Least Absolute Shrinkage and Selection Operator (LASSO) constraint-is reformulated as a dynamical system on the unit sphere. The LASSO inequality constraint is tackled by exterior penalty function. A globally convergent algorithm is developed based on the projected gradient approach. The algorithm is illustrated numerically and discussed on a well-known data set. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Ozone and temperature profiles from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been assimilated, using three-dimensional variational assimilation, into a stratosphere troposphere version of the Met Office numerical weather-prediction system. Analyses are made for the month of September 2002, when there was an unprecedented split in the southern hemisphere polar vortex. The analyses are validated against independent ozone observations from sondes, limb-occultation and total column ozone satellite instruments. Through most of the stratosphere, precision varies from 5 to 15%, and biases are 15% or less of the analysed field. Problems remain in the vortex and below the 60 hPa. level, especially at the tropopause where the analyses have too much ozone and poor agreement with independent data. Analysis problems are largely a result of the model rather than the data, giving confidence in the MIPAS ozone retrievals, though there may be a small high bias in MIPAS ozone in the lower stratosphere. Model issues include an excessive Brewer-Dobson circulation, which results both from known problems with the tracer transport scheme and from the data assimilation of dynamical variables. The extreme conditions of the vortex split reveal large differences between existing linear ozone photochemistry schemes. Despite these issues, the ozone analyses are able to successfully describe the ozone hole split and compare well to other studies of this event. Recommendations are made for the further development of the ozone assimilation system.
Resumo:
The definition and interpretation of the Arctic oscillation (AO) are examined and compared with those of the North Atlantic oscillation (NAO). It is shown that the NAO reflects the correlations between the surface pressure variability at its centers of action, whereas this is not the case for the AO. The NAO pattern can be identified in a physically consistent way in principal component analysis applied to various fields in the Euro-Atlantic region. A similar identification is found in the Pacific region for the Pacific–North American (PNA) pattern, but no such identification is found here for the AO. The AO does reflect the tendency for the zonal winds at 35° and 55°N to anticorrelate in both the Atlantic and Pacific regions associated with the NAO and PNA. Because climatological features in the two ocean basins are at different latitudes, the zonally symmetric nature of the AO does not mean that it represents a simple modulation of the circumpolar flow. An increase in the AO or NAO implies strong, separated tropospheric jets in the Atlantic but a weakened Pacific jet. The PNA has strong related variability in the Pacific jet exit, but elsewhere the zonal wind is similar to that related to the NAO. The NAO-related zonal winds link strongly through to the stratosphere in the Atlantic sector. The PNA-related winds do so in the Pacific, but to a lesser extent. The results suggest that the NAO paradigm may be more physically relevant and robust for Northern Hemisphere variability than is the AO paradigm. However, this does not disqualify many of the physical mechanisms associated with annular modes for explaining the existence of the NAO.
Resumo:
Thymus is taxonomically a very complex genus with a high frequency of hybridisation and introgression among sympatric species. The variation in accumulation of leaf-surface flavonoids was investigated in 71 wild populations of Thymus front different putative hybrid swarm areas in Andalucia, Spain. Twenty-two flavones, five flavanones, two dihydroflavonols, a flavonol and two unknowns were detected by HPLC-DAD combined with LC-APCI-MS analysis. The majority of compounds were flavones with a lutelin-type substitution of the B-ring, in contrast to previous reports on Macedonian taxa, which predominantly accumulate flavones with apigenin-type substitution of the B-ring. Anatomical and morphometric studies, supported by cluster analysis, identified pure Thymus hyemalis and Thymus baeticus populations, and a large number of putative hybrids. Flavonoid variation was closely related to morphological variation in all populations and is suspected to be a result of genetic polymorphism. Principal component analysis identified the presence of species-specific and geographically linked chemotypes and putative hybrids with mixed morphological and chemical characteristics. Qualitative and quantitative flavonoid accumulation appears to be genetically regulated, while external factors play a secondary role. Flavonoid profiles can thus provide diagnostic markers for the taxonomy of Thymus and are also useful in detecting hybridising taxa. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The rheological properties of dough and gluten are important for end-use quality of flour but there is a lack of knowledge of the relationships between fundamental and empirical tests and how they relate to flour composition and gluten quality. Dough and gluten from six breadmaking wheat qualities were subjected to a range of rheological tests. Fundamental (small-deformation) rheological characterizations (dynamic oscillatory shear and creep recovery) were performed on gluten to avoid the nonlinear influence of the starch component, whereas large deformation tests were conducted on both dough and gluten. A number of variables from the various curves were considered and subjected to a principal component analysis (PCA) to get an overview of relationships between the various variables. The first component represented variability in protein quality, associated with elasticity and tenacity in large deformation (large positive loadings for resistance to extension and initial slope of dough and gluten extension curves recorded by the SMS/Kieffer dough and gluten extensibility rig, and the tenacity and strain hardening index of dough measured by the Dobraszczyk/Roberts dough inflation system), the elastic character of the hydrated gluten proteins (large positive loading for elastic modulus [G'], large negative loadings for tan delta and steady state compliance [J(e)(0)]), the presence of high molecular weight glutenin subunits (HMW-GS) 5+10 vs. 2+12, and a size distribution of glutenin polymers shifted toward the high-end range. The second principal component was associated with flour protein content. Certain rheological data were influenced by protein content in addition to protein quality (area under dough extension curves and dough inflation curves [W]). The approach made it possible to bridge the gap between fundamental rheological properties, empirical measurements of physical properties, protein composition, and size distribution. The interpretation of this study gave indications of the molecular basis for differences in breadmaking performance.
Resumo:
The composition of the colonic microbiota of 91 northern Europeans was characterized by fluorescent in situ hybridization using 18 phylogenetic probes. On average 75% of the bacteria were identified, and large interindividual variations were observed. Clostridium coccoides and Clostridium leptum were the dominant groups (28.0% and 25.2%), followed by the Bacteroides (8.5%). According to principal component analysis, no significant grouping with respect to geographic origin, age, or gender was observed.
Resumo:
The identification and visualization of clusters formed by motor unit action potentials (MUAPs) is an essential step in investigations seeking to explain the control of the neuromuscular system. This work introduces the generative topographic mapping (GTM), a novel machine learning tool, for clustering of MUAPs, and also it extends the GTM technique to provide a way of visualizing MUAPs. The performance of GTM was compared to that of three other clustering methods: the self-organizing map (SOM), a Gaussian mixture model (GMM), and the neural-gas network (NGN). The results, based on the study of experimental MUAPs, showed that the rate of success of both GTM and SOM outperformed that of GMM and NGN, and also that GTM may in practice be used as a principled alternative to the SOM in the study of MUAPs. A visualization tool, which we called GTM grid, was devised for visualization of MUAPs lying in a high-dimensional space. The visualization provided by the GTM grid was compared to that obtained from principal component analysis (PCA). (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Deep Brain Stimulation (DBS) has been successfully used throughout the world for the treatment of Parkinson's disease symptoms. To control abnormal spontaneous electrical activity in target brain areas DBS utilizes a continuous stimulation signal. This continuous power draw means that its implanted battery power source needs to be replaced every 18–24 months. To prolong the life span of the battery, a technique to accurately recognize and predict the onset of the Parkinson's disease tremors in human subjects and thus implement an on-demand stimulator is discussed here. The approach is to use a radial basis function neural network (RBFNN) based on particle swarm optimization (PSO) and principal component analysis (PCA) with Local Field Potential (LFP) data recorded via the stimulation electrodes to predict activity related to tremor onset. To test this approach, LFPs from the subthalamic nucleus (STN) obtained through deep brain electrodes implanted in a Parkinson patient are used to train the network. To validate the network's performance, electromyographic (EMG) signals from the patient's forearm are recorded in parallel with the LFPs to accurately determine occurrences of tremor, and these are compared to the performance of the network. It has been found that detection accuracies of up to 89% are possible. Performance comparisons have also been made between a conventional RBFNN and an RBFNN based on PSO which show a marginal decrease in performance but with notable reduction in computational overhead.
Resumo:
A new state estimator algorithm is based on a neurofuzzy network and the Kalman filter algorithm. The major contribution of the paper is recognition of a bias problem in the parameter estimation of the state-space model and the introduction of a simple, effective prefiltering method to achieve unbiased parameter estimates in the state-space model, which will then be applied for state estimation using the Kalman filtering algorithm. Fundamental to this method is a simple prefiltering procedure using a nonlinear principal component analysis method based on the neurofuzzy basis set. This prefiltering can be performed without prior system structure knowledge. Numerical examples demonstrate the effectiveness of the new approach.