948 resultados para IN-CELL SIMULATION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several lines of evidence have shown that Trypanosoma cruzi interacts with host extracellular matrix (ECM) components producing breakdown products that play an important role in parasite mobilization and infectivity. Parasite-released antigens also modulate ECM expression that could participate in cell-cell and/or cell-parasite interactions. Increased expression of ECM components has been described in the cardiac tissue of chronic chagasic patients and diverse target tissues including heart, thymus, central nervous system and skeletal muscle of experimentally T. cruzi-infected mice. ECM components may adsorb parasite antigens and cytokines that could contribute to the establishment and perpetuation of inflammation. Furthermore, T. cruzi-infected mammalian cells produce cytokines and chemokines that not only participate in the control of parasitism but also contribute to the establishment of chronic inflammatory lesions in several target tissues and most frequently lead to severe myocarditis. T. cruzi-driven cytokines and chemokines may also modulate VCAM-1 and ICAM-1 adhesion molecules on endothelial cells of target tissues and play a key role in cell recruitment, especially of activated VLA-4+LFA-1+CD8+ T lymphocytes, resulting in a predominance of this cell population in the inflamed heart, central nervous system and skeletal muscle. The VLA-4+-invading cells are surrounded by a fine network of fibronectin that could contribute to cell anchorage, activation and effector functions. Since persistent "danger signals" triggered by the parasite and its antigens are required for the establishment of inflammation and ECM alterations, therapeutic interventions that control parasitism and selectively modulate cell migration improve ECM abnormalities, paving the way for the development of new therapeutic strategies improving the prognosis of T. cruzi-infected individuals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Schistosoma mansoni causes liver disease by inducing granulomatous inflammation. This favors formation of reactive oxygen species, including superoxide ions, hydrogen peroxide and hydroxyl radicals all of which may induce lipid peroxidation. We have evaluated lipid peroxidation in 18 patients with hepatosplenic schistosomiasis mansoni previously treated with oxamniquine followed by splenectomy, ligature of the left gastric vein and auto-implantation of spleen tissue, by measuring levels of erythrocyte-conjugated dienes and plasma malondialdehyde (MDA). Age-matched, healthy individuals (N = 18) formed the control group. Erythrocyte-conjugated dienes were extracted with dichloromethane/methanol and quantified by UV spectrophotometry, while plasma MDA was measured by reaction with thiobarbituric acid. Patient erythrocytes contained two times more conjugated dienes than control cells (584.5 ± 67.8 vs 271.7 ± 20.1 µmol/l, P < 0.001), whereas the increase in plasma MDA concentration (about 10%) was not statistically significant. These elevated conjugated dienes in patients infected by S. mansoni suggest increased lipid peroxidation in cell membranes, although this was not evident when a common marker of oxidative stress, plasma MDA, was measured. Nevertheless, these two markers of lipid peroxidation, circulating MDA and erythrocyte-conjugated dienes, correlated significantly in both patient (r = 0.62; P < 0.01) and control (r = 0.57; P < 0.05) groups. Our data show that patients with schistosomiasis have abnormal lipid peroxidation, with elevated erythrocyte-conjugated dienes implying dysfunctional cell membranes, and also imply that this may be attenuated by the redox capacity of antioxidant agents, which prevent accumulation of plasma MDA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hepatitis A virus (HAV) replicates relatively slowly in cell culture without a cytopathic effect, a fact that limits the use of tissue culture assays. The radioimmunofocus assay is the standard method for HAV titration, although it is labor intensive and requires the use of radioisotopes. A simple, rapid and objective infectivity assay based on an in situ enzyme immunoassay (EIA) is described here for a Brazilian cell culture-adapted HAV strain (HAF-203). The assay uses a peroxidase-labeled polyclonal antibody to fixed monolayers as an indicator of infection. EIA may be completed within 7 days using serial 5-fold dilutions of the virus, yielding a titer of 5.024 log 50% tissue culture infective dose (TCID50)/ml for HAF-203. This technique had a detection limit of 1.1 log TCID50/ml and the specificity was demonstrated by detecting no reaction on the columns of uninfected wells. The reproducibility (with intra- and inter-assay coefficients of variation ranging from 1.9 to 3.8% and from 3.5 to 9.9%, respectively) and quantitation of the assay were demonstrated by close agreement in virus infectivity titers among different assays of the same amount of virus and between assays of different amounts of virus. Furthermore, this assay does not require the use of radiolabeled antibodies. We describe here an efficient EIA that is highly reproducible and that could be used to monitor HAV growth in cell culture and to determine the quantity of HAV antigen needed for diagnostic assays. This is the first report of the infectious titer of the Brazilian cell culture-adapted HAV strain (HAF-203).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neuroblastoma, the most common extracranial tumor in childhood, has a wide spectrum of clinical and biological features. The loss of heterozygosity within the 9p21 region has been reported as a prognostic factor. Two tumor suppressor genes located in this region, the CDKN2B/p15 and CDKN2A/p16 (cyclin-dependent kinase inhibitors 2B and 2A, respectively) genes, play a critical role in cell cycle progression and are considered to be targets for tumor inactivation. We analyzed CDKN2B/p15 and CDKN2A/p16 gene alterations in 11 patients, who ranged in age from 4 months to 13 years (male/female ratio was 1.2:1). The most frequent stage of the tumor was stage IV (50%), followed by stages II and III (20%) and stage I (10%). The samples were submitted to the multiplex PCR technique for homozygous deletion analysis and to single-strand conformation polymorphism and nucleotide sequencing for mutation analysis. All exons of both genes were analyzed, but no deletion was detected. One sample exhibited shift mobility specific for exon 2 in the CDKN2B/p15 gene, not confirmed by DNA sequencing. Homozygous deletions and mutations are not involved in the inactivation mechanism of the CDKN2B/p15 and CDKN2A/p16 genes in neuroblastoma; however, these two abnormalities do not exclude other inactivation pathways. Recent evidence has shown that the expression of these genes is altered in this disease. Therefore, other mechanisms of inactivation, such as methylation of promoter region and unproperly function of proteins, may be considered in order to estimate the real contribution of these genes to neuroblastoma genesis or disease progression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease of unknown etiology, affects motor neurons leading to atrophy of skeletal muscles, paralysis and death. There is evidence for the accumulation of neurofilaments (NF) in motor neurons of the spinal cord in ALS cases. NF are major structural elements of the neuronal cytoskeleton. They play an important role in cell architecture and differentiation and in the determination and maintenance of fiber caliber. They are composed of three different polypeptides: light (NF-L), medium (NF-M) and heavy (NF-H) subunits. In the present study, we performed a morphological and quantitative immunohistochemical analysis to evaluate the accumulation of NF and the presence of each subunit in control and ALS cases. Spinal cords from patients without neurological disease and from ALS patients were obtained at autopsy. In all ALS cases there was a marked loss of motor neurons, besides atrophic neurons and preserved neurons with cytoplasmic inclusions, and extensive gliosis. In control cases, the immunoreaction in the cytoplasm of neurons was weak for phosphorylated NF-H, strong for NF-M and weak for NF-L. In ALS cases, anterior horn neurons showed intense immunoreactivity in focal regions of neuronal perikarya for all subunits, although the difference in the integrated optical density was statistically significant only for NF-H. Furthermore, we also observed dilated axons (spheroids), which were immunopositive for NF-H but negative for NF-M and NF-L. In conclusion, we present qualitative and quantitative evidence of NF-H subunit accumulation in neuronal perikarya and spheroids, which suggests a possible role of this subunit in the pathogenesis of ALS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vero cells, a cell line established from the kidney of the African green monkey (Cercopithecus aethiops), were cultured in F-10 Ham medium supplemented with 10% fetal calf serum at 37°C on membranes of poly(L-lactic acid) (PLLA), poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and their blends in different proportions (100/0, 60/40, 50/50, 40/60, and 0/100). The present study evaluated morphology of cells grown on different polymeric substrates after 24 h of culture by scanning electron microscopy. Cell adhesion was also analyzed after 2 h of inoculation. For cell growth evaluation, the cells were maintained in culture for 48, 120, 240, and 360 h. For cytochemical study, the cells were cultured for 120 or 240 h, fixed, processed for histological analysis, and stained with Toluidine blue, pH 4.0, and Xylidine ponceau, pH 2.5. Our results showed that cell adhesion was better when 60/40 and 50/50 blends were used although cells were able to grow and proliferate on all blends tested. When using PLLA/PHBV (50/50) slightly flattened cells were observed on porous and smooth areas. PLLA/PHBV (40/60) blends presented flattened cells on smooth areas. PLLA/PHBV (0/100), which presented no pores, also supported spreading cells interconnected by thin filaments. Histological sections showed that cells grew as a confluent monolayer on different substrates. Cytochemical analysis showed basophilic cells, indicating a large amount of RNA and proteins. Hence, we detected changes in cell morphology induced by alterations in blend proportions. This suggests that the cells changed their differentiation pattern when on various PLLA/PHBV blend surfaces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The syndecans, heparan sulfate proteoglycans, are abundant molecules associated with the cell surface and extracellular matrix and consist of a protein core to which heparan sulfate chains are covalently attached. Each of the syndecan core proteins has a short cytoplasmic domain that binds cytosolic regulatory factors. The syndecans also contain highly conserved transmembrane domains and extracellular domains for which important activities are becoming known. These protein domains locate the syndecan on cell surface sites during development and tumor formation where they interact with other receptors to regulate signaling and cytoskeletal organization. The functions of cell surface heparan sulfate proteoglycan have been centered on the role of heparan sulfate chains, located on the outer side of the cell surface, in the binding of a wide array of ligands, including extracellular matrix proteins and soluble growth factors. More recently, the core proteins of the syndecan family transmembrane proteoglycans have also been shown to be involved in cell signaling through interaction with integrins and tyrosine kinase receptors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

TP53, a tumor suppressor gene, has a critical role in cell cycle, apoptosis and cell senescence and participates in many crucial physiological and pathological processes. Identification of TP53 polymorphism in older people and age-related diseases may provide an understanding of its physiology and pathophysiological role as well as risk factors for complex diseases. TP53 codon 72 (TP53:72) polymorphism was investigated in 383 individuals aged 66 to 97 years in a cohort from a Brazilian Elderly Longitudinal Study. We investigated allele frequency, genotype distribution and allele association with morbidities such as cardiovascular disease, type II diabetes, obesity, neoplasia, low cognitive level (dementia), and depression. We also determined the association of this polymorphism with serum lipid fractions and urea, creatinine, albumin, fasting glucose, and glycated hemoglobin levels. DNA was isolated from blood cells, amplified by PCR using sense 5'-TTGCCGTCCCAAGCAATGGATGA-3' and antisense 5'-TCTGGGAAGGGACAGAAGATGAC-3' primers and digested with the BstUI enzyme. This polymorphism is within exon 4 at nucleotide residue 347. Descriptive statistics, logistic regression analysis and Student t-test using the multiple comparison test were used. Allele frequencies, R (Arg) = 0.69 and P (Pro) = 0.31, were similar to other populations. Genotype distributions were within Hardy-Weinberg equilibrium. This polymorphism did not show significant association with any age-related disease or serum variables. However, R allele carriers showed lower HDL levels and a higher frequency of cardiovascular disease than P allele subjects. These findings may help to elucidate the physiopathological role of TP53:72 polymorphism in Brazilian elderly people.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present review, we describe a systematic study of the sulfated polysaccharides from marine invertebrates, which led to the discovery of a carbohydrate-based mechanism of sperm-egg recognition during sea urchin fertilization. We have described unique polymers present in these organisms, especially sulfated fucose-rich compounds found in the egg jelly coat of sea urchins. The polysaccharides have simple, linear structures consisting of repeating units of oligosaccharides. They differ among the various species of sea urchins in specific patterns of sulfation and/or position of the glycosidic linkage within their repeating units. These polysaccharides show species specificity in inducing the acrosome reaction in sea urchin sperm, providing a clear-cut example of a signal transduction event regulated by sulfated polysaccharides. This distinct carbohydrate-mediated mechanism of sperm-egg recognition coexists with the bindin-protein system. Possibly, the genes involved in the biosynthesis of these sulfated fucans did not evolve in concordance with evolutionary distance but underwent a dramatic change near the tip of the Strongylocentrotid tree. Overall, we established a direct causal link between the molecular structure of a sulfated polysaccharide and a cellular physiological event - the induction of the sperm acrosome reaction in sea urchins. Small structural changes modulate an entire system of sperm-egg recognition and species-specific fertilization in sea urchins. We demonstrated that sulfated polysaccharides - in addition to their known function in cell proliferation, development, coagulation, and viral infection - mediate fertilization, and respond to evolutionary mechanisms that lead to species diversity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review addresses the mechanisms of methylmercury (MeHg)-induced neurotoxicity, specifically examining the role of oxidative stress in mediating neuronal damage. A number of critical findings point to a central role for astrocytes in mediating MeHg-induced neurotoxicity as evidenced by the following observations: a) MeHg preferentially accumulates in astrocytes; b) MeHg specifically inhibits glutamate uptake in astrocytes; c) neuronal dysfunction is secondary to disturbances in astrocytes. The generation of reactive oxygen species (ROS) by MeHg has been observed in various experimental paradigms. For example, MeHg enhances ROS formation both in vivo (rodent cerebellum) and in vitro (isolated rat brain synaptosomes), as well as in neuronal and mixed reaggregating cell cultures. Antioxidants, including selenocompounds, can rescue astrocytes from MeHg-induced cytotoxicity by reducing ROS formation. We emphasize that oxidative stress plays a significant role in mediating MeHg-induced neurotoxic damage with active involvement of the mitochondria in this process. Furthermore, we provide a mechanistic overview on oxidative stress induced by MeHg that is triggered by a series of molecular events such as activation of various kinases, stress proteins and other immediate early genes culminating in cell damage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Denervation of the colon is protective against the colon cancer; however, the mechanisms involved are unknown. We tested the hypothesis that the denervated colonic mucosa could be less responsive to the action of the chemical carcinogen dimethylhydrazine (DMH). Three groups of 32 male Wistar rats were treated as follows: group 1 (G1) had the colon denervated with 0.3 mL 1.5 mM benzyldimethyltetradecylammonium (benzalkonium chloride, BAC); G2 received a single ip injection of 125 mg/kg DMH; G3 was treated with BAC + the same dose and route of DMH. A control group (Sham, N = 32) did not receive any treatment. Each group was subdivided into four groups according to the sacrifice time (1, 2, 6, and 12 weeks after DMH). Crypt fission index, ß-catenin accumulated crypts, aberrant crypt foci, and cell proliferation were evaluated and analyzed by ANOVA and the Student t-test. G3 animals presented a small number of aberrant crypt foci and low crypt fission index compared to G2 animals after 2 and 12 weeks, respectively. From the second week on, the index of ß-catenin crypt in G3 animals increased slower than in G2 animals. From the 12th week on, G2 animals presented a significant increase in cell proliferation when compared to the other groups. Colonic denervation plays an anticarcinogenic role from early stages of colon cancer development. This finding can be of importance for the study of the role of the enteric nervous system in the carcinogenic process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nasopharyngeal carcinoma is a common malignancy in Southern China of uncertain etiologic origin. Diallyl trisulfide (DATS), one of the major components of garlic (Allium sativum), is highly bactericidal and fungicidal. In this study, we investigated the function of p38 mitogen-activated protein kinase (MAPK) and caspase-8 in DATS-induced apoptosis of human CNE2 cells using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], flow cytometry assay, and Western blotting. After CNE2 cells were treated with DATS (50, 100, or 150 μM) for 24 h, cell viability rates were 75.9, 63.4 and 39.6%, and apoptosis rates were 24.5, 36.9, and 62.4%, respectively. The data showed that DATS induced CNE2 cell death in a dose-dependent manner. After human CNE2 cells were treated with 100 μM DATS and inhibitors (10 μM SB203580 and Z-LETD-FMK for p38MAPK and caspase-8, respectively), changes in cell viability and apoptosis and in p38MAPK and caspase-8 activity were detected. Cell viability rates were 66.5 and 68.1% and decreased 9.9 and 11.5% compared with inhibitor treatment alone. Apoptosis rates were 31.53 and 29.98% and increased 9.1 and 10% compared with inhibitor treatment alone. The results indicated that DATS activates p38MAPK and caspase-8, but both inhibitors have an effect on P38MAPK and caspase-8 activity. In conclusion, our data indicate that p38MAPK and caspase-8 are involved in the process of DATS-induced apoptosis in human CNE2 cells and interact with each other.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Maintenance of cell homeostasis and regulation of cell proliferation depend importantly on regulating the process of protein synthesis. Many disease states arise when disregulation of protein synthesis occurs. This review focuses on mechanisms of translational control and how disregulation results in cell malignancy. Most translational controls occur during the initiation phase of protein synthesis, with the initiation factors being the major target of regulation through their phosphorylation. In particular, the recruitment of mRNAs through the m7G-cap structure and the binding of the initiator methionyl-tRNAi are frequent targets. However, translation, especially of specific mRNAs, may also be regulated by sequestration into processing bodies or stress granules, by trans-acting proteins or by microRNAs. When the process of protein synthesis is hyper-activated, weak mRNAs are translated relatively more efficiently, leading to an imbalance of cellular proteins that promotes cell proliferation and malignant transformation. This occurs, for example, when the cap-binding protein, eIF4E, is overexpressed, or when the methionyl-tRNAi-binding factor, eIF2, is too active. In addition, enhanced activity of eIF3 contributes to oncogenesis. The importance of the translation initiation factors as regulators of protein synthesis and cell proliferation makes them potential therapeutic targets for the treatment of cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The epithelial-mesenchymal transition (EMT) is involved in neoplastic metastasis, and the RON protein may be involved. In the present study, we determined the role and the mechanisms of action of RON in EMT in Madin-Darby canine kidney (MDCK) cells by Western blot and cell migration analysis. Activation of RON by macrophage stimulating protein (MSP) results in cell migration and initiates changes in the morphology of RON-cDNA-transfected MDCK cells. The absence of E-cadherin, the presence of vimentin and an increase in Snail were observed in RE7 cells, which were derived from MDCK cells transfected with wt-RON, compared with MDCK cells. Stimulation of RE7 cells with MSP resulted in increased migration (about 69% of the wounded areas were covered) as well as increased activation of extracellular signal-regulated kinase 1/2 (Erk1/2) and glycogen synthase kinase-3β (GSK-3β; the percent of the activation ratio was 143.6/599.8% and 512.4%, respectively), which could be inhibited with an individual chemical inhibitor PD98059 (50 μM) specific to MAPK/ERK kinase (the percent inhibition was 98.9 and 81.2%, respectively). Thus, the results indicated that RON protein could mediate EMT in MDCK cells via the Erk1/2 pathway. Furthermore, GSK-3β regulates the function of Snail in controlling EMT by this pathway.