971 resultados para IL-1RA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Macrophage activity, cytokines serum concentration, serum neutralizing antibodies and lethality by rabies were evaluated in swiss mice experimentally infected with street rabies virus and submitted or not to antirabies vaccination and immunomodulation with P. acnes. Animals were killed at different times and serum was collected in order to evaluate cytokines concentration; peritonial and splenic macrophages were collected for macrophage activity evaluation. Greater survival rates higher IL-10 and low IL-6 serum concentration were observed in vaccinated animals treated using P. acnes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We investigated the production of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) during canine visceral leishmaniasis (VL) to gain a better understanding of the role of such multi-functional cytokines in parasite resistance. IL-6 and TNF-alpha levels were measured by capture ELISA in sera from 8 healthy dogs from a non-endemic area (control group) and in sera from 16 dogs from Aracatuba, SP, Brazil, an area endemic for leishmaniosis. The dogs from the endemic area were selected by positive ELISA serology against total Leishmania chagasi antigen, positive spleen imprints for Leishmania, and the presence of at least three clinical signs associated with active visceral leishmaniasis (fever, dermatitis, lymphoadenopathy, onychogryphosis, weight loss, cachexia, locomotory difficulty, conjunctivitis, epistaxis, hepatosplenomegaly, edema, and apathy).Enhanced systemic IL-6 production was found in sera from dogs with the active disease compared to healthy dogs (t-test, P < 0.05). In contrast, TNF-alpha did not differ between the two groups studied. There was no correlation between IL-6 production and anti-leishmanial antibody titers in the sera. Our findings suggest that IL-6 is a good marker of active disease during leishmaniasis, and that other cytokines may be involved in the hypergammaglobulinemia characteristic of canine visceral leishmaniasis. (c) 2006 Published by Elsevier B.V.
Resumo:
Dogs are the main domestic reservoirs of L. (L.) chagasi. Once in the vertebrate host, the parasite can cause visceral leishmaniasis, which can also be transmitted to humans. Cytokines are key elements of the host immune response against Leishmania spp. To investigate whether tumor necrosis factor (TNF)-alpha, interleukin (IL)-4 and IL-10 are associated with pattern infection in dogs, these cytokines were quantified in the spleen and liver of dogs naturally infected with L. (L.) chagasi, with or without clinical manifestations, and their levels were correlated with the parasite load verified in these organs. A total of 40 adult dogs naturally infected with L. (L.) chagasi were assessed, together with 12 uninfected control dogs. Samples from spleen and liver were used to determine the cytokine levels by capture ELISA and for quantifying parasite load by real-time PCR. Statistical analysis was performed using the minimum Chi square method and group means were compared using the Tukey test. TNF-alpha, IL-4 and IL-10 levels in infected dogs were higher than in control groups; the liver was the main cytokine-producing organ during infection. The level of splenic TNF-alpha showed correlation with parasite load and may represent an important marker for infection process evolution, with the participation of IL-10. These results may contribute to a clearer understanding of the immune response in dogs infected with L. (L.) chagasi, which may lead to the development of prophylactic or preventive measures for these animals.
Resumo:
Objective. In the present study, the role of macrophages and mast cells in mineral trioxide aggregate (MTA)-induced release of neutrophil chemotactic factor was investigated.Study design. MTA suspension (50 mg/mL) was plated over inserts on macrophages or mast cells for 90 minutes. Untreated cells served as controls. Cells were washed and cultured for 90 minutes in RPMI without the stimuli. Macrophages and mast cell supernatants were injected intraperitoneally (0.5 mL/cavity), and neutrophil migration was assessed 6 hours later. In some experiments, cells were incubated for 30 minutes with dexamethasone (DEX, 10 mu M/well), BWA4C (BW, 100 mu M/well) or U75302 (U75, 10 mu M/well). The concentration of Leukotriene B-4 (LTB4) in the cell-free supernatant from mast cells and macrophage culture was measured by ELISA.Results. Supernatants from MTA-stimulated macrophages and mast cells caused neutrophil migration. The release of neutrophil chemotactic factor by macrophages and mast cells was significantly inhibited by DEX, BW, or U75. Macrophages and mast cells expressed mRNA for interleukin-1 (IL-1)beta and macrophage inflammatory protein-2 (MIP-2) and the pretreatment of macrophages and mast cells with DEX, BW, or U75 significantly altered IL-1 beta and MIP-2 mRNA expression. LTB4 was detected in the MTA-stimulated macrophage supernatant but not mast cells.Conclusions. MTA-induces the release of neutrophil chemotactic factor substances from macrophages and mast cells with participation of IL-1 beta, MIP-2, and LTB4. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: e135-e142)
Resumo:
Coupled bone turnover is directed by the expression of receptor-activated NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Proinflammatory cytokines, such as interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) induce RANKL expression in bone marrow stromal cells. Here, we report that IL-1 beta and TNF-alpha-induced RANKL requires p38 mitogen-activating protein kinase (MAPK) pathway activation for maximal expression. Real-time PCR was used to assess the p38 contribution toward IL-1 beta and TNF-alpha-induced RANKL mRNA expression. Steady-state RANKL RNA levels were increased approximately 17-fold by IL-1 beta treatment and subsequently reduced similar to 70%-90% when p38 MAPK was inhibited with SB203580. RANKL mRNA stability data indicated that p38 MAPK did not alter the rate of mRNA decay in IL-1 beta-induced cells. Using a RANKL-luciferase cell line receptor containing a 120-kB segment of the 5' flanking region of the RANKL gene, reporter expression was stimulated 4-5-fold by IL-1 beta or TNF-alpha treatment. IL-1 beta-induced RANKL reporter expression was completely blocked with specific p38 inhibitors as well as dominant negative mutant constructs of MAPK kinase-3 and -6. In addition, blocking p38 signaling in bone marrow stromal cells partially inhibited IL-1 beta and TNF-alpha-induced osteoclastogenesis in vitro. Results from these studies indicate that p38 MAPK is a major signaling pathway involved in IL-1 beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hydrogen Sulfide (H(2)S) a volatile Sulfur compound, is implicated as a cause of inflammation. especially when it is produced by bacteria colonizing gastrointestinal organs However, It IS Unclear if H(2)S produced by periodontal pathogens affects the inflammatory responses mediated by oral/gingival epithelial cells Therefore. the aims of this Study were (1) to compare the in vitro production of H(2)S among. 14 strains of Oral bacteria and (2) to evaluate the effects of H(2)S on inflammatory response induced in host oral/gingival epithelial cells Porphyromonas gingivalis (Pg) produced the most H(2)S in Culture, Which, in turn resulted in the promotion of proinflammatory cytokine IL-8 from both gingival and Oral epithelial cells The up-regulation of IL-8 expression was reproduced by the exogenously applied H(2)S Furthermore. the Mutant Strains of Pg that do not produce major Soluble Virulent factors. ie gingival, still showed the Production of H(2)S. as well as the promotion of epithelial IL-8 production. which was abrogated by H(2)S scavenging reagents These results demonstrated that Pg produces a concentration of H(2)S capable of Up-regulating-IL-8 expression induced in gingival and oral epithelial cells, revealing a possible mechanism that may promote the inflammation in periodontal disease (C) 2009 Elsevier B.V. All rights reserved
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Antineoplastic chemotherapeutic agents may indirectly activate dendritic cells (DCs) by inducing the release of danger signals from dying tumor cells. Whereas the direct cytotoxic or inhibitory effect of conventional chemotherapy on DCs has been reported, modulation of DC function by chemotherapeutic agents in low noncytotoxic concentrations has not yet been investigated. We have tested the effects of different classes of antineoplastic chemotherapeutic agents used in low noncytotoxic concentrations on the Ag-presenting function of DCs. We revealed that paclitaxel, doxorubicin, mitomycin C, and methotrexate up-regulated the ability of DCs to present Ags to Ag-specific T cells. Stimulation of DC function was associated with the up-regulation of expression of Ag-processing machinery components and costimulatory molecules on DCs, as well as increased IL-12p70 expression. However, the ability of DCs treated with paclitaxel, methotrexate, doxorubicin, and vinblastine to increase Ag presentation to Ag-specific T cells was abolished in DCs generated from IL-12 knockout mice, indicating that up-regulation of Ag presentation by DCs is IL-12-dependent and mediated by the autocrine or paracrine mechanisms. At the same time, IL-12 knockout and wild-type DCs demonstrated similar capacity to up-regulate OVA presentation after their pretreatment with low concentrations of mitomycin C and vincristine, suggesting that these agents do not utilize IL-12-mediated pathways in DCs for stimulating Ag presentation. These findings reveal a new mechanism of immunopotentiating activity of chemotherapeutic agents-a direct immunostimulatory effect on DCs (chemomodulation)-and thus provide a strong rationale for further assessment of low-dose chemotherapy given with DC vaccines for cancer treatment. The Journal of Immunology, 2009, 183: 137-144.
Resumo:
Matrix metalloprotease-13 (MMP-13) or collagenase-3 is involved in a number of pathologic processes such as tumor metastasis and angiogenesis, osteoarthritis, rheumatoid arthritis and periodontal diseases. These conditions are associated with extensive degradation of both connective tissue and bone. This report examines gene regulation mechanisms and signal transduction pathways involved in Mmp-13 expression induced by proinflammatory cytokines in periodontal ligament (PDL) fibroblasts. Mmp-13 mRNA expression was increased 10.7 and 9.5 fold after stimulation with IL-1 beta (5 ng/mL) and TNF-alpha (10 ng/mL), respectively. However, inhibition of p38 MAPKinase with SB203580 resulted in significant (p < 0.001) induction (23.2 and 18.1 fold, respectively) of Mmp-13 mRNA as assessed by real time PCR. Negative regulation of IL-1 induced Mmp-13 expression was confirmed by inhibiting p38 MAPK gene expression with siRNA. Transient transfection of dominant negative forms of MKK3 and MKK6 also resulted in increased levels of Mmp-13 mRNA after IL-1 beta stimulation. Mmp-13 mRNA expression induced by TNF-alpha was decreased by JNK and ERK inhibition. Western blot and zymogram analysis indicated that Mmp-13 protein expression induced by the proinflammatory cytokines were also upregulated by inhibition of p38 MAPK. Reporter gene experiments using stable cell lines harboring 660-bp sequence of the murine Mmp-13 proximal promoter indicated that transcriptional mechanisms were at least partially involved in this negative regulation of Mmp-13 expression by p38 MAPK and upstream MKK3/6. These results suggest a negative transcriptional regulatory mechanism mediated by p38 MAPK and upstream MKK3/6 on Mmp-13 expression induced by proinflammatory cytokines in PDL fibroblasts. (c) 2005 Elsevier B.V./International Society of Matrix Biology. All rights reserved.