986 resultados para Hydraulic turbines.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this study was to evaluate the hydraulic performance of riprap spurs and weirs in controlling bank erosion at the Southern part of the Raccoon River upstream U.S. Highway 169 Bridge utilizing the commercially available model FESWMS and field monitoring. It was found based on a 2 year monitoring and numerical modeling that the design of structures was overall successful, including their spacing and stability. The riprap material incorporated into the structures was directly and favorably correlated to the flow transmission through the structure, or in other words, dictated the permeable nature of the structure. It was found that the permeable dikes and weirs chosen in this study created less volume of scour in the vicinity of the structure toes and thus have less risk comparatively to other impermeable structures to collapse. The fact that the structures permitted the transmission of flow through them it allowed fine sand particles to fill in the gaps of the rock interstices and thus cement and better stabilize the structures. During bank-full flows the maximum scour hole was recorded away from the structures toe and the scourhole size was directly related to the protrusion angle of the structure to the flow. It was concluded that the proposed structure inclination with respect to the main flow direction was appropriate since it provides maximum bank protection while creating the largest volume of local scour away from the structure and towards the center of the channel. Furthermore, the lowest potential for bank erosion also occurs with the present set-up design chosen by the IDOT. About 2 ft of new material was deposited in the area located between the structures for the period extending from the construction day to May 2007. Surveys obtained by sonar and the presence of vegetation indicate that new material has been added at the bank toes. Finally, the structures provided higher variability in bed topography forming resting pools, creating flow shade on the leeward side of the structure, and separation of bed substrate due to different flow conditions. Another notable environmental benefit to rock riprap weirs and dikes is the creation of resting pools, especially in year 2007 (2nd year of the project). The magnitude of these benefits to aquatic habitat has been found in the literature that is directly related to the induced scour-hole volume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main negative anthropic effects on soil is the formation of crusts, resulting in soil degradation. This process of physical origin reduces soil water infiltration, causing increased runoff and consequently soil losses, water erosion and/or soil degradation. The study and monitoring of soil crusts is important for soil management and conservation, mainly in tropical regions where research is insufficient to explain how soil crusts are formed and how they evolve. The purpose of this study was to monitor these processes on soils with different particle size distributions. Soil crusts on a sandy/sandy loam Argissolo Vermelho-Amarelo (Typic Hapludult), sandy loam Latossolo Vermelho-Amarelo (Typic Hapludox) and a clayey Nitossolo Vermelho eutroférrico (Rhodic Kandiudalf) were monitored. The soil was sampled and data collected after 0, 3, 5 and 10 rain storms with intensities above 25 mm h-1, from December 2008 to May 2009. Soil chemical and particle size distribution analysis were performed. The changes caused by rainfall were monitored by determining the soil roughness, hydraulic conductivity and soil water retention curves and by micromorphological analysis. Reduced soil roughness and crust formation were observed for all soils during the monitored rainfall events. However, contrary to what was expected according to the literature, crust formation was not always accompanied by reductions in total porosity, hydraulic conductivity and soil water retention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gully erosion occurs by the combined action of splash, sheetwash and rill-wash (interrill and rill erosion). These erosion processes have a great capacity for both sediment production and sediment transport. The objectives of this experiment were to evaluate hydrological and sediment transport in a degraded area, severely dissected by gullies; to assess the hydraulic flow characteristics and their aggregate transport capacity; and to measure the initial splash erosion rate. In the study area in Guarapuava, State of Paraná, Brazil (lat 25º 24' S; long 51º24' W; 1034 m asl), the soil was classified as Cambissolo Húmico alumínico, with the following particle-size composition: sand 0.116 kg kg-1; silt 0.180 kg kg-1; and clay 0.704 kg kg-1. The approach of this research was based on microcatchments formed in the ground, to study the hydrological response and sediment transport. A total of eight rill systems were simulated with dry and wet soil. An average rainfall of 33.7 ± 4.0 mm was produced for 35 to 54 min by a rainfall simulator. The equipment was installed, and a trough was placed at the end of the rill to collect sediments and water. During the simulation, the following variables were measured: time to runoff, time to ponding, time of recession, flow velocity, depth, ratio of the initial splash and grain size. The rainsplash of dry topsoil was more than twice as high as under moist conditions (5 g m-2 min-1 and 2 g m-2 min-1, respectively). The characteristics of the flow hydraulics indicate transition from laminar to turbulent flow [Re (Reynolds number) 1000-2000]. In addition, it was observed that a flow velocity of 0.12 m s-1 was the threshold for turbulent flow (Re > 2000), especially at the end of the rainfall simulation. The rill flow tended to be subcritical [Fr (Froude Number) < 1.0]. The variation in hydrological attributes (infiltration and runoff) was lower, while the sediment yield was variable. The erosion in the rill systems was characterized as limited transport, although the degraded area generated an average of 394 g m-2 of sediment in each simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A laboratory study has been conducted with two aims in mind. The first goal was to develop a description of how a cutting edge scrapes ice from the road surface. The second goal was to investigate the extent, if any, to which serrated blades were better than un-serrated or "classical" blades at ice removal. The tests were conducted in the Ice Research Laboratory at the Iowa Institute of Hydraulic Research of the University of Iowa. A specialized testing machine, with a hydraulic ram capable of attaining scraping velocities of up to 30 m.p.h. was used in the testing. In order to determine the ice scraping process, the effects of scraping velocity, ice thickness, and blade geometry on the ice scraping forces were determined. Higher ice thickness lead to greater ice chipping (as opposed to pulverization at lower thicknesses) and thus lower loads. Behavior was observed at higher velocities. The study of blade geometry included the effect of rake angle, clearance angle, and flat width. The latter were found to be particularly important in developing a clear picture of the scraping process. As clearance angle decreases and flat width increases, the scraping loads show a marked increase, due to the need to re-compress pulverized ice fragments. The effect of serrations was to decrease the scraping forces. However, for the coarsest serrated blades (with the widest teeth and gaps) the quantity of ice removed was significantly less than for a classical blade. Finer serrations appear to be able to match the ice removal of classical blades at lower scraping loads. Thus, one of the recommendations of this study is to examine the use of serrated blades in the field. Preliminary work (by Nixon and Potter, 1996) suggests such work will be fruitful. A second and perhaps more challenging result of the study is that chipping of ice is more preferable to pulverization of the ice. How such chipping can be forced to occur is at present an open question.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In view of the importance of the macroporosity for the water transport properties of soils, its quantitative assessment is a challenging task. Measurements of hydraulic conductivity (K) at different soil water tensions and the quantification of water-conducting macropores (θM) of a soil under different tillage systems could help understand the effects on the soil porous system and related hydraulic properties. The purpose of this study was to assess the effects of Conventional Tillage (CT), Chisel Plow (CP) and No Tillage (NT) on θM and on K; and to quantify the contribution of macroporosity to total water flux in a loam soil. A tension disc infiltrometer was used at two soil water pressure heads (-5 cm, and 0) to infer θM and K, during fallow. Macroporosity was determined based on the flow contribution between 0 and -5 cm water potentials (K0, K5, respectively), according to the Hagen-Poiseuille equation. The K0 values were statistically higher for CT than for NT and CP. The K5 values did not differ statistically among treatments. The mean K values varied between 0.20 and 3.70 cm/h. For CT, θM was significantly greater than for CP and NT, following the same trend as K0. No differences in θM were detected between CP and NT. With CT, the formation of water-conducting macropores with persistence until post-harvest was possible, while under CP preparation, the water-conducting macropores were not persistent. These results support the idea that tillage affects the soil water movement mainly by the resulting water-conducting macropores. Future studies on tillage effects on water movement should focus on macroporosity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of soil-water dynamics using toposequences are essential to improve the understanding of soil-water-vegetation relationships. This study assessed the hydro-physical and morphological characteristics of soils of Atlantic Rainforest in the Parque Estadual de Carlos Botelho, state of São Paulo, Brazil. The study area of 10.24 ha (320 x 320 m) was covered by dense tropical rainforest (Atlantic Rainforest). Based on soil maps and topographic maps of the area, a representative transect of the soil in this plot was chosen and five soil trenches were opened to determine morphological properties. To evaluate the soil hydro-physical functioning, soil particle size distribution, bulk density (r), particle density (r s), soil water retention curves (SWRC), field saturated hydraulic conductivity (Ks), macroporosity (macro), and microporosity (micro) and total porosity (TP) were determined. Undisturbed samples were collected for micromorphometric image analysis, to determine pore size, shape, and connectivity. The soils in the study area were predominantly Inceptisols, and secondly Entisols and Epiaquic Haplustult. In the soil hydro-physical characterization of the selected transect, a change was observed in Ks between the surface and subsurface layers, from high/intermediate to intermediate/low permeability. This variation in soil-water dynamics was also observed in the SWRC, with higher water retention in the subsurface horizons. The soil hydro-physical behavior was influenced by the morphogenetic characteristics of the soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on water retention and availability are scarce for subtropical or humid temperate climate regions of the southern hemisphere. The aims of this study were to evaluate the relations of the soil physical, chemical, and mineralogical properties with water retention and availability for the generation and validation of continuous point pedotransfer functions (PTFs) for soils of the State of Santa Catarina (SC) in the South of Brazil. Horizons of 44 profiles were sampled in areas under different cover crops and regions of SC, to determine: field capacity (FC, 10 kPa), permanent wilting point (PWP, 1,500 kPa), available water content (AW, by difference), saturated hydraulic conductivity, bulk density, aggregate stability, particle size distribution (seven classes), organic matter content, and particle density. Chemical and mineralogical properties were obtained from the literature. Spearman's rank correlation analysis and path analysis were used in the statistical analyses. The point PTFs for estimation of FC, PWP and AW were generated for the soil surface and subsurface through multiple regression analysis, followed by robust regression analysis, using two sets of predictive variables. Soils with finer texture and/or greater organic matter content retain more moisture, and organic matter is the property that mainly controls the water availability to plants in soil surface horizons. Path analysis was useful in understanding the relationships between soil properties for FC, PWP and AW. The predictive power of the generated PTFs to estimate FC and PWP was good for all horizons, while AW was best estimated by more complex models with better prediction for the surface horizons of soils in Santa Catarina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil management practices which increase the root depth penetration of citrus are important to the longevity and yield maintenance of this plant, especially in regions where long periods of drought are common, even in soil conventionally subsoiled to a depth of 30-40 cm, when the orchard was first established. The objective of this study was to evaluate the efficiency of subsoiling on the physical and hydric properties of a Typical Hapludult and fruit yield in a 14-year-old citrus orchard located in Piracicaba, SP. The treatments consisted of: no-subsoiling (with no tilling of the soil after the orchard was planted); subsoiling on one side of the plant lines (SUB. 1); and subsoiling on both sides of the plant lines (SUB. 2). The subsoiling treatments were carried out 1.5 m from the plant lines and to a depth of 0.8 m. Soil samples were taken 120 days after this operation, at four depths, in order to determine physical and hydric properties. Fruit yield was evaluated 150 days after subsoiling. Subsoiling between the plant lines of an old established citrus orchard alters the physical and hydric properties of the soil, which is reflected in increased soil macroporosity and unsaturated hydraulic conductivity, and reduced soil bulk density, critical degree-of-compactness and penetration resistance. The improvements in the physical and hydric properties of the soil were related to an increase in fruit number and orchard yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peatlands are soil environments that store carbon and large amounts of water, due to their composition (90 % water), low hydraulic conductivity and a sponge-like behavior. It is estimated that peat bogs cover approximately 4.2 % of the Earth's surface and stock 28.4 % of the soil carbon of the planet. Approximately 612 000 ha of peatlands have been mapped in Brazil, but the peat bogs in the Serra do Espinhaço Meridional (SdEM) were not included. The objective of this study was to map the peat bogs of the northern part of the SdEM and estimate the organic matter pools and water volume they stock. The peat bogs were pre-identified and mapped by GIS and remote sensing techniques, using ArcGIS 9.3, ENVI 4.5 and GPS Track Maker Pro software and the maps validated in the field. Six peat bogs were mapped in detail (1:20,000 and 1:5,000) by transects spaced 100 m and each transect were determined every 20 m, the UTM (Universal Transverse Mercator) coordinates, depth and samples collected for characterization and determination of organic matter, according to the Brazilian System of Soil Classification. In the northern part of SdEM, 14,287.55 ha of peatlands were mapped, distributed over 1,180,109 ha, representing 1.2 % of the total area. These peatlands have an average volume of 170,021,845.00 m³ and stock 6,120,167 t (428.36 t ha-1) of organic matter and 142,138,262 m³ (9,948 m³ ha-1) of water. In the peat bogs of the Serra do Espinhaço Meridional, advanced stages of decomposing (sapric) organic matter predominate, followed by the intermediate stage (hemic). The vertical growth rate of the peatlands ranged between 0.04 and 0.43 mm year-1, while the carbon accumulation rate varied between 6.59 and 37.66 g m-2 year-1. The peat bogs of the SdEM contain the headwaters of important water bodies in the basins of the Jequitinhonha and San Francisco Rivers and store large amounts of organic carbon and water, which is the reason why the protection and preservation of these soil environments is such an urgent and increasing need.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of compacted layers in soils can induce subprocesses (e.g., discontinuity of water flow) and induces soil erosion and rill development. This study assesses how rill erosion in Oxisols is affected by a plow pan. The study shows that changes in hydraulic properties occur when the topsoil is eroded because the compacted layer lies close below the surface. The hydraulic properties that induce sediment transport and rill formation (i.e., hydraulic thresholds at which these processes occur) are not the same. Because of the resistance of the compacted layer, the hydraulic conditions leading to rill incision on the soil surface differed from the conditions inducing rill deepening. The Reynolds number was the best hydraulic predictor for both processes. The formed rills were shallow and could easily be removed by tillage between crops. However, during rill development, large amounts of soil and contaminants could also be transferred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Management systems may lead to a loss of soil physical quality as a result of removal of the plant cover and excessive agricultural mechanization. The hypothesis of this study was that the soil aggregate stability, bulk density, macro- and microporosity, and the S index and saturated hydraulic conductivity may be used as indicators of the soil physical quality. The aim was to study the effects of different periods and managements on the physical attributes of a medium-textured Red Oxisol under soybean and corn for two growing seasons, and determine which layers are most susceptible to variations. A completely randomized experimental design was used with split plots (five treatments and four layers), with four replications. The treatments in 2008/09 consisted of: five years of no-tillage (NTS5), seven years of no-tillage (NTS7), nine years of no-tillage (NTS9), conventional tillage (CTS) and an adjacent area of native forest (NF). The treatments were extended for another year, identified in 2009/10 as: NTS6, NTS8, NTS10, CTS and NF. The soil layers 0-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.30 m were sampled. The highest S index values were observed in the treatment CTS in the 0-0.05 m layer (0.106) and the 0.05-0.10 m layer (0.099) in 2008/09, and in the 0-0.05 m layer (0.066) in 2009/10. This fact may be associated with soil turnover, resulting in high macroporosity in this treatment. In contrast, in the NTS, limiting macroporosity values were observed in some layers (below 0.10 m³ m-3). Highest aggregate stability as well as the highest saturated hydraulic conductivity (Kθ) values were observed in NF in relation to the other treatments. In 2009/10, the Kθ in NF differed only from NTS10. This study showed that the use of the S index alone cannot be recommended as an absolute indicator of the soil physical quality, even at values greater than 0.035.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed knowledge on water percolation into the soil in irrigated areas is fundamental for solving problems of drainage, pollution and the recharge of underground aquifers. The aim of this study was to evaluate the percolation estimated by time-domain-reflectometry (TDR) in a drainage lysimeter. We used Darcy's law with K(θ) functions determined by field and laboratory methods and by the change in water storage in the soil profile at 16 points of moisture measurement at different time intervals. A sandy clay soil was saturated and covered with plastic sheet to prevent evaporation and an internal drainage trial in a drainage lysimeter was installed. The relationship between the observed and estimated percolation values was evaluated by linear regression analysis. The results suggest that percolation in the field or laboratory can be estimated based on continuous monitoring with TDR, and at short time intervals, of the variations in soil water storage. The precision and accuracy of this approach are similar to those of the lysimeter and it has advantages over the other evaluated methods, of which the most relevant are the possibility of estimating percolation in short time intervals and exemption from the predetermination of soil hydraulic properties such as water retention and hydraulic conductivity. The estimates obtained by the Darcy-Buckingham equation for percolation levels using function K(θ) predicted by the method of Hillel et al. (1972) provided compatible water percolation estimates with those obtained in the lysimeter at time intervals greater than 1 h. The methods of Libardi et al. (1980), Sisson et al. (1980) and van Genuchten (1980) underestimated water percolation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modeling of water movement in non-saturated soil usually requires a large number of parameters and variables, such as initial soil water content, saturated water content and saturated hydraulic conductivity, which can be assessed relatively easily. Dimensional flow of water in the soil is usually modeled by a nonlinear partial differential equation, known as the Richards equation. Since this equation cannot be solved analytically in certain cases, one way to approach its solution is by numerical algorithms. The success of numerical models in describing the dynamics of water in the soil is closely related to the accuracy with which the water-physical parameters are determined. That has been a big challenge in the use of numerical models because these parameters are generally difficult to determine since they present great spatial variability in the soil. Therefore, it is necessary to develop and use methods that properly incorporate the uncertainties inherent to water displacement in soils. In this paper, a model based on fuzzy logic is used as an alternative to describe water flow in the vadose zone. This fuzzy model was developed to simulate the displacement of water in a non-vegetated crop soil during the period called the emergency phase. The principle of this model consists of a Mamdani fuzzy rule-based system in which the rules are based on the moisture content of adjacent soil layers. The performances of the results modeled by the fuzzy system were evaluated by the evolution of moisture profiles over time as compared to those obtained in the field. The results obtained through use of the fuzzy model provided satisfactory reproduction of soil moisture profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past three decades, pedotransfer functions (PTFs) have been widely used by soil scientists to estimate soils properties in temperate regions in response to the lack of soil data for these regions. Several authors indicated that little effort has been dedicated to the prediction of soil properties in the humid tropics, where the need for soil property information is of even greater priority. The aim of this paper is to provide an up-to-date repository of past and recently published articles as well as papers from proceedings of events dealing with water-retention PTFs for soils of the humid tropics. Of the 35 publications found in the literature on PTFs for prediction of water retention of soils of the humid tropics, 91 % of the PTFs are based on an empirical approach, and only 9 % are based on a semi-physical approach. Of the empirical PTFs, 97 % are continuous, and 3 % (one) is a class PTF; of the empirical PTFs, 97 % are based on multiple linear and polynomial regression of n th order techniques, and 3 % (one) is based on the k-Nearest Neighbor approach; 84 % of the continuous PTFs are point-based, and 16 % are parameter-based; 97 % of the continuous PTFs are equation-based PTFs, and 3 % (one) is based on pattern recognition. Additionally, it was found that 26 % of the tropical water-retention PTFs were developed for soils in Brazil, 26 % for soils in India, 11 % for soils in other countries in America, and 11 % for soils in other countries in Africa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of the soil water retention curve (SWRC) is essential for understanding and modeling hydraulic processes in the soil. However, direct determination of the SWRC is time consuming and costly. In addition, it requires a large number of samples, due to the high spatial and temporal variability of soil hydraulic properties. An alternative is the use of models, called pedotransfer functions (PTFs), which estimate the SWRC from easy-to-measure properties. The aim of this paper was to test the accuracy of 16 point or parametric PTFs reported in the literature on different soils from the south and southeast of the State of Pará, Brazil. The PTFs tested were proposed by Pidgeon (1972), Lal (1979), Aina & Periaswamy (1985), Arruda et al. (1987), Dijkerman (1988), Vereecken et al. (1989), Batjes (1996), van den Berg et al. (1997), Tomasella et al. (2000), Hodnett & Tomasella (2002), Oliveira et al. (2002), and Barros (2010). We used a database that includes soil texture (sand, silt, and clay), bulk density, soil organic carbon, soil pH, cation exchange capacity, and the SWRC. Most of the PTFs tested did not show good performance in estimating the SWRC. The parametric PTFs, however, performed better than the point PTFs in assessing the SWRC in the tested region. Among the parametric PTFs, those proposed by Tomasella et al. (2000) achieved the best accuracy in estimating the empirical parameters of the van Genuchten (1980) model, especially when tested in the top soil layer.