995 resultados para Hump BARIA combustion rate
Resumo:
在四辊冷轧试验机和Gleeble-1500试验机上进行了热轧微碳钢板的冷轧和退火试验。用D/max-RC衍射仪测量了试样的,/”层织构,并用Roe软件进行了ODF分析。研究表明,所研究的热轧微碳深冲板压下率约为75%,退火升温速度为20-40℃/h时,试样为{111}织构特征;压下率较大(80%)时,退火织构为较弱的{111}组分。无论{111}织构还是非{111}织构都是在形核阶段开始形成,在晶粒长大优先长大,受到定向形核和选择生长双重机制的作用。
Resumo:
It is known that the press formability and the elongation of laser textured sheet are improved, and the service life of textured roll is longer than that of the un-textured roll due to hardening of the treated surface. One of the goals to develop high repetitive rate YAG laser-induced discharge texturing (LIDT) is to get deeper hardening zone. By observing and measuring cross-section of LIDT spots in different discharge conditions, it is found that the single-crater, which is formed by the discharge conditions of anode, which is covered by an oil film and with rectangular current waveform, has the most depth of heat affected zone (HAZ) comparing with other crater shapes when discharge energy is the same. The depth of HAZ is mainly depends on pulse duration when the discharge spot is single-crater. The results are analyzed.
Resumo:
Kinetics and its regulation by extrinsic physical factors govern selectin-ligand interactions that mediate tethering and rolling of circulating cells on the vessel wall under hemodynamic forces. While the force regulation of off-rate for dissociation of selectin-ligand bonds has been extensively studied, much less is known about how transport impacts the on-rate for association of these bonds and their stability. We used atomic force microscopy (AFM) to quantify how the contact duration, loading rate, and approach velocity affected kinetic rates and strength of bonds of P-selectin interacting with P-selectin glycoprotein ligand I (PSGL-1). We found a saturable relationship between the contact time and the rupture force, a biphasic relationship between the adhesion probability and the retraction velocity, a piece-wise linear relationship between the rupture force and the logarithm of the loading rate, and a threshold relationship between the approach velocity and the rupture force. These results provide new insights into how physical factors regulate receptor-ligand interactions.
Resumo:
Bacteria of the species Salmonella enterica cause a range of life-threatening diseases in humans and animals worldwide. The within-host quantitative, spatial, and temporal dynamics of S. enterica interactions are key to understanding how immunity acts on these infections and how bacteria evade immune surveillance. In this study, we test hypotheses generated from mathematical models of in vivo dynamics of Salmonella infections with experimental observation of bacteria at the single-cell level in infected mouse organs to improve our understanding of the dynamic interactions between host and bacterial mechanisms that determine net growth rates of S. enterica within the host. We show that both bacterial and host factors determine the numerical distributions of bacteria within host cells and thus the level of dispersiveness of the infection.
Resumo:
A new DC plasma torch in which are jet states and deposition parameters can be regulated over a wide range has been built. It showed advantages in producing stable plasma conditions at a small gas flow rate. Plasma jets with and without magnetically rotated arcs could be generated. With straight are jet deposition, diamond films could be formed at a rate of 39 mu m/h on Mo substrates of Phi 25 mm, and the conversion rate of carbon in CH4 to diamond was less than 3%. Under magnetically rotated conditions, diamond films could be deposited uniformly in a range of Phi 40 mm at 30 mu m/h, with a quite low total gas flow rate and high carbon conversion rate of over 11%. Mechanisms of rapid and uniform deposition of diamond films with low gas consumption and high carbon transition efficiency are discussed.
Resumo:
Investigation of kerosene combustion in a Mach 2.5 flow was carried out using a model supersonic combustor with cross-section area of 51 mm × 70 mm and different integrated fuel injector/flameholder cavity modules. Experiments with pure liquid atomization and with effervescent atomization were characterized and compared. Direct photography, Schlieren imaging, and planar laser induced fluorescence (PLIF) imaging of OH radical were utilized to examine the cavity characteristics and spray structure. Schlieren images illustrate the effectiveness of gas barbotage in facilitating atomization and the importance of secondary atomization when kerosene sprays interacting with a supersonic crossflow. OH PLIF images further substantiate our previous finding that there exists a local high-temperature radical pool within the cavity flameholder, and this radical pool plays a crucial role in promoting kerosene combustion in a supersonic combustor. Under the same operation conditions, comparison of the measured static pressure distributions along the combustor also shows that effervescent atomization generally leads to better combustion performance than the use of pure liquid atomization. Furthermore, the present results demonstrate that the cavity characteristics can be different in non-reacting and reacting supersonic flows. As such, the conventional definition of cavity characteristics based on non-reacting flows needs to be revised.
Resumo:
Compressive deformation behavior of the Nd60Fe20Co10Al10 bulk metallic glass was characterized over a wide strain rate range (6.0 x 10(-4) to 1.0x10(3) s(-1)) at room temperature. Fracture stress was found to increase and fracture strain decrease with increasing applied strain rate. Serrated flow and a large number of shear bands were observed at the quasi-static strain rate (6.0 x 10(-4)s(-1)). The results suggest that the appearance of a large number of shear bands is probably associated with flow serration observed during compression; and both shear banding and flow serration are a strain accommodation and stress relaxation process. At dynamic strain rates (1.0 x 10(3) s(-1)), the rate of shear band nucleation is not sufficient to accommodate the applied strain rate and thus causes an early fracture of the test sample. The fracture behavior of the Nd60Fe20Co10Al10 bulk metallic glass is sensitive to strain rate.
Resumo:
This paper deals with the quantitative prediction of the volume fraction of martensitic transformation in a austenitic steel that undergoes impact with high strain rate. The coupling relations between strain, stress, strain rate, transformation rate and transformed fraction were derived from the OTC model and modified Bodner-Partom equations, where the impact process was considered as an adiabatic and no entropy-increased process (pressure less than or equal to 20GPa). The one-dimensional results were found to model and predict various experimental results obtained on 304 stainless steel under impact with high strain rate.
Resumo:
The non-deterministic relationship between Bit Error Rate and Packet Error Rate is demonstrated for an optical media access layer in common use. We show that frequency components of coded, non-random data can cause this relationship. © 2005 Optical Society of America.
Resumo:
In order to find a link between results obtained from a laboratory erosion tester and tests carried out on a pneumatic conveyor, a comparison has been made between weight loss from bends on an industrial-scale pneumatic conveyor and erosion rates obtained in a small centrifugal erosion tester, for the same materials. Identical test conditions have been applied to both experiments so that comparable test results have been obtained. The erosion rate of mild steel commonly used as the wall material of conveyor pipes and pipe bends was determined individually on both test rigs. A relationship between weight loss from the bends and erosion rate determined from the tester has been developed. A discussion based on the results and their applicability to the prediction of wear in pneumatic conveyors concludes the paper. © 2004 Elsevier B.V. All rights reserved.