984 resultados para Humoral rejection
Resumo:
This article is an integrative mini review of the research on the interactions between Trypanosoma rangeli and the insect vector, Rhodnius prolixus. Special attention is given to the interactions of these parasites with the gut environment, gut walls, with hemolymph invasion, hemocytes, hemocyte microaggregations, prophenoloxidase-activating system, superoxide, and nitric acid generation and eicosanoid pathways. We described factors affecting vectorial capacity and suggested that T. rangeli may modulate the hemocoelic invasion and the survival of the parasites by overcoming the cellular and humoral defense reactions of the insect vector at different physiological events. The mechanisms of these interactions and their significance for parasite transmission are discussed.
Resumo:
In many experimental models, CD4+CD25+Foxp3+ regulatory T cells (nTreg) have been identifi ed as key players in promoting peripheral transplantation (Tx) tolerance. We have been focusing on therapies based on antigen-specifi c nTreg that can control effector T cells (Teff) and prevent allograft rejection. The use of nTreg in immunotherapeutic protocols for solid organ Tx is however limited by their overall low numbers as well as the low precursor frequency of alloantigen cross-reactive nTreg expected to be found in a normal individual. Moreover, although we previously described robust protocols to generate and expand antigen-specifi c nTreg in vitro, the process requires careful selection of highly pure nTreg and cumbersome ex-vivo manipulations, rendering this strategy not easily applicable in clinical solid organ Tx. In this study, we aimed to expand Treg directly in vivo and determine their suppressive function, effi cacy and stability in promoting donor-specifi c tolerance in a stringent murine Tx model. Our data suggest that IL-2-based therapies lead to a signifi cant increase of Treg in vivo. The expanded Treg suppressed Teff proliferation (albeit slightly less effi ciently than nTreg isolated from control mice) and allowed prolonged graft survival of major MHC-mismatched skin grafts in wild-type non-lymphopenic recipients. The expanded Treg alone were however not suffi cient to induce tolerance in stringent experimental conditions. Rapamycin reduced the frequency of Teff but did not impede expansion of Treg. Pro-infl ammatory stimuli hindered the expansion of Treg and resulted in an increase in the frequency of CD4+IFN-γ+ and CD4+IL17+ T cells. We propose that IL-2-based treatments would be an effi cient method for expanding functional Treg in vivo without affecting other immune cell populations, thereby favorably shifting the pool of alloreactive T cells towards regulation in response to an allograft. However, we also highlight some potential limitations of Treg expansion such as concomitant infl ammatory events.
Resumo:
Lymphatic filariasis caused by nematode parasites Wuchereria bancrofti or Brugia malayi is a spectral disease and produces wide range of immune responses and varying levels ofmicrofilaraemia in infected individuals. The relationship between the immune response of host and the developmental stage of the parasite as well as the microfilariae (mf) density and specific location of the adult worms is yet to be understood. As an experimental model, B. malayi adapted in the experimental animal Mastomys coucha has been used widely for various studies in filariasis. The present study was to assess microfilaraemia as well as the humoral immune response of M. coucha during various stages of B. malayi development and their localization in different organs. The result showed that the density of mf in the circulating blood of the experimental animal depended upon the number of female worms as well as the location and co-existence of male and female worms. The mf density in the blood increased with the increase in the number of females. The clearance of inoculated infective stage (L3) or single sex infection or segregation of male and female to different organs of infected host resulted in amicrofilaraemic condition. With respect to antibody response, those animals cleared L3 after inoculation and those with adult worm as well as mf showed low antibody levels. But those with developmental fourth stage and/or adult worms without mf showed significantly higher antibody levels.
Resumo:
Trypanosoma cruzi acute infections often go unperceived, but one third of chronically infected individuals die of Chagas disease, showing diverse manifestations affecting the heart, intestines, and nervous systems. A common denominator of pathology in Chagas disease is the minimal rejection unit, whereby parasite-free target host cells are destroyed by immune system mononuclear effectors cells infiltrates. Another key feature stemming from T. cruzi infection is the integration of kDNA minicircles into the vertebrate host genome; horizontal transfer of the parasite DNA can undergo vertical transmission to the progeny of mammals and birds. kDNA integration-induced mutations can enter multiple loci in diverse chromosomes, generating new genes, pseudo genes and knock-outs, and resulting in genomic shuffling and remodeling over time. As a result of the juxtaposition of kDNA insertions with host open reading frames, novel chimeric products may be generated. Germ line transmission of kDNA-mutations determined the appearance of lesions in birds that are indistinguishable from those seen in Chagas disease patients. The production of tissue lesions showing typical minimal rejection units in birds' refractory to T. cruzi infection is consistent with the hypothesis that autoimmunity, likely triggered by integration-induced phenotypic alterations, plays a major role in the pathogenesis of Chagas disease.
Resumo:
Human occupation for several centuries was recorded in the archaeological layers of "Place d'Armes", Namur, Belgium. Preventive archaeological excavations were carried out between 1996/1997 and seven historical strata were observed, from Gallo-Roman period up to Modern Times. Soil samples from cesspools, latrines, and structures-like were studied and revealed intestinal parasite eggs in the different archaeological contexts. Ascaris lumbricoides, A. suum, Trichuris trichiura, T. suis. Taenia sp., Fasciola hepatica, Diphyllobothrium sp., Capillaria sp. and Oxyuris equi eggs were found. Paleoparasitology confirmed the use of structures as latrines or cesspit as firstly supposed by the archaeologists. Medieval latrines were not only used for rejection of human excrements. The finding of Ascaris sp. and Trichuris sp. eggs may point to human's or wild swine's feces. Gallo-Roman people used to eat wild boar. Therefore, both A. suum and T. suis, or A. lumbricoides and T. trichuris, may be present, considering a swine carcass recovered into a cesspit. Careful sediment analysis may reveal its origin, although parasites of domestic animals can be found together with those of human's. Taenia sp. eggs identified in latrine samples indicate ingestion of uncooked beef with cysticercoid larvae. F. hepatica eggs suggest the ingestion of raw contaminated vegetables and Diphyllobothrium sp. eggs indicate contaminated fresh-water fish consumption. Ascaris sp. and Trichuris sp. eggs indicate fecal-oral infection by human and/or animal excrements.
Resumo:
The thrombospondin related adhesion protein (TRAP) is a malaria pre-erythrocytic antigen currently pursued as malaria vaccine candidate to Plasmodium falciparum. In this study, a long synthetic peptide (LSP) representing a P. vivax TRAP fragment involved in hepatocyte invasion was formulated in both Freund and Montanide ISA 720 adjutants and administered by IM and subcutaneous routes to BALB/c mice and Aotus monkeys. We measured specific humoral immune responses in both animal species and performed a sporozoite challenge in Aotus monkeys to assess the protective efficacy of the vaccine. After immunization both mice and Aotus seroconverted as shown by ELISA, and the specific anti-peptide antibodies cross reacted with the parasite in IFAT assays. Only two out of six immunized animals became infected after P. vivax sporozoite challenge as compared with four out of six animals from the control group. These results suggest that this TRAP fragment has protective potential against P. vivax malaria and deserves further studies as vaccine candidate.
Resumo:
BACKGROUND: Tumor necrosis factor/tumor necrosis factor receptor superfamily members conform a group of molecular interaction pathways of essential relevance during the process of T-cell activation and differentiation toward effector cells and particularly for the maintenance phase of the immune response. Specific blockade of these interacting pathways, such as CD40-CD40L, contributes to modulate the deleterious outcome of allogeneic immune responses. We postulated that antagonizing the interaction of LIGHT expression on activated T cells with its receptors, herpesvirus entry mediator and lymphotoxin β receptor, may decrease T cell-mediated allogeneic responses. METHODS: A flow cytometry competition assay was designed to identify anti-LIGHT monoclonal antibodies capable to prevent the interaction of mouse LIGHT with its receptors expressed on transfected cells. An antibody with the desired specificity was evaluated in a short-term in vivo allogeneic cytotoxic assay and tested for its ability to detect endogenous mouse LIGHT. RESULTS: We provide evidence for the first time that in mice, as previously described in humans, LIGHT protein is rapidly and transiently expressed after T-cell activation, and this expression was stronger on CD8 T cells than on CD4 T cells. Two anti-LIGHT antibodies prevented interactions of mouse LIGHT with its two known receptors, herpesvirus entry mediator and lymphotoxin β receptor. In vivo administration of anti-LIGHT antibody (clone 10F12) ameliorated host antidonor short-term cytotoxic response in wild type B6 mice, although to a lesser extent than that observed in LIGHT-deficient mice. CONCLUSION: The therapeutic targeting of LIGHT may contribute to achieve a better control of cytotoxic responses refractory to current immunosuppressive drugs in transplantation.
Resumo:
The ability of vaccines to induce memory cytotoxic T-cell responses in the lung is crucial in stemming and treating pulmonary diseases caused by viruses and bacteria. However, most approaches to subunit vaccines produce primarily humoral and only to a lesser extent cellular immune responses. We developed a nanoparticle (NP)-based carrier that, upon delivery to the lung, specifically targets pulmonary dendritic cells, thus enhancing antigen uptake and transport to the draining lymph node; antigen coupling via a disulfide link promotes highly efficient cross-presentation after uptake, inducing potent protective mucosal and systemic CD8(+) T-cell immunity. Pulmonary immunization with NP-conjugated ovalbumin (NP-ova) with CpG induced a threefold enhancement of splenic antigen-specific CD8(+) T cells displaying increased CD107a expression and IFN-γ production compared with immunization with soluble (i.e., unconjugated) ova with CpG. This enhanced response was accompanied by a potent Th17 cytokine profile in CD4(+) T cells. After 50 d, NP-ova and CpG also led to substantial enhancements in memory CD8(+) T-cell effector functions. Importantly, pulmonary vaccination with NP-ova and CpG induced as much as 10-fold increased frequencies of antigen-specific effector CD8(+) T cells to the lung and completely protected mice from morbidity following influenza-ova infection. Here, we highlight recruitment to the lung of a long-lasting pool of protective effector memory cytotoxic T-cells by our disulfide-linked antigen-conjugated NP formulation. These results suggest the reduction-reversible NP system is a highly promising platform for vaccines specifically targeting intracellular pathogens infecting the lung.
Resumo:
The blood pressure (BP), heart rate (HR), and humoral effects of single intravenous (i.v.) doses of the angiotensin-converting enzyme (ACE) inhibitor captopril was investigated in five normotensive healthy volunteers. Each subject received at 1-week intervals a bolus dose of either captopril (1, 5, and 25 mg) or its vehicle. The study was conducted in a single-blind fashion, and the order of treatment phases was randomized. The different doses of captopril had no acute effect on BP and HR. They induced a dose-dependent decrease in plasma ACE activity and plasma angiotensin II levels. The angiotensin-(1-8) octapeptide was isolated by solid-phase extraction and high-performance liquid chromatography (HPLC) prior to radioimmunoassay (RIA). All three doses of captopril reduced circulating angiotensin II levels within 15 min of drug administration. Only with the 25-mg dose was the angiotensin II concentration below the detection limit at 15 min and still significantly reduced 90 min after drug administration. Simultaneous and progressive decreases in plasma aldosterone levels were observed both with ACE inhibition and during vehicle injection, but the relative fall was more pronounced after captopril administration. No adverse reaction was noticed. These results demonstrate that captopril given parenterally blocks the renin-angiotensin system in a dose-dependent manner. Only with the dose of 25 mg was the inhibition of plasma-converting enzyme activity and the reduction of plasma angiotensin II sustained for at least 1 1/2 h.
Resumo:
Abdominal angiostrongyliasis (AA) is a zoonotic nematode infection caused by Angiostrongylus costaricensis, with widespread occurrence in the Americas. Although the human infection may be highly prevalent, morbidity is low in Southern Brazil. Confirmed diagnosis is based on finding parasitic structures in pathological examination of biopsies or surgical resections. Serology stands as an important diagnostic tool in the less severe courses of the infection. Our objective is to describe the follow up of humoral reactivity every 2-4 weeks up to one year, in six individuals with confirmed (C) and ten suspected (S) AA. Antibody (IgG) detection was performed by ELISA and resulted in gradually declining curves of reactivity in nine subjects (56%) (4C + 5S), that were consistently negative in only three of them (2C + 1S) after 221, 121 and 298 days. Three individuals (2C + 1S) presented with low persistent reacitivity, other two (1C + 1S) were serologically negative from the beginning, but also presenting a declining tendency. The study shows indications that abdominal angiostrongyliasis is usually not a persistent infection: although serological negativation may take many months, IgG reactivity is usually declining along time and serum samples pairing may add valuable information to the diagnostic workout.
Resumo:
Humoral factors play an important role in the control of exercise hyperpnea. The role of neuromechanical ventilatory factors, however, is still being investigated. We tested the hypothesis that the afferents of the thoracopulmonary system, and consequently of the neuromechanical ventilatory loop, have an influence on the kinetics of oxygen consumption (VO2), carbon dioxide output (VCO2), and ventilation (VE) during moderate intensity exercise. We did this by comparing the ventilatory time constants (tau) of exercise with and without an inspiratory load. Fourteen healthy, trained men (age 22.6 +/- 3.2 yr) performed a continuous incremental cycle exercise test to determine maximal oxygen uptake (VO2max = 55.2 +/- 5.8 ml x min(-1) x kg(-1)). On another day, after unloaded warm-up they performed randomized constant-load tests at 40% of their VO2max for 8 min, one with and the other without an inspiratory threshold load of 15 cmH2O. Ventilatory variables were obtained breath by breath. Phase 2 ventilatory kinetics (VO2, VCO2, and VE) could be described in all cases by a monoexponential function. The bootstrap method revealed small coefficients of variation for the model parameters, indicating an accurate determination for all parameters. Paired Student's t-tests showed that the addition of the inspiratory resistance significantly increased the tau during phase 2 of VO2 (43.1 +/- 8.6 vs. 60.9 +/- 14.1 s; P < 0.001), VCO2 (60.3 +/- 17.6 vs. 84.5 +/- 18.1 s; P < 0.001) and VE (59.4 +/- 16.1 vs. 85.9 +/- 17.1 s; P < 0.001). The average rise in tau was 41.3% for VO2, 40.1% for VCO2, and 44.6% for VE. The tau changes indicated that neuromechanical ventilatory factors play a role in the ventilatory response to moderate exercise.
Resumo:
OBJECTIVE:: The study of HIV-1 rapid progressors has been limited to specific case reports. Nevertheless, identification and characterization of the viral and host factors involved in rapid progression are crucial when attempting to uncover the correlates of rapid disease outcome. DESIGN:: We carried out comparative functional analyses in rapid progressors (n = 46) and standard progressors (n = 46) early after HIV-1 seroconversion (≤1 year). The viral traits tested were viral replicative capacity, co-receptor usage, and genomic variation. Host CD8 T-cell responses, humoral activity, and HLA immunogenetic markers were also determined. RESULTS:: Our data demonstrate an unusual convergence of highly pathogenic HIV-1 strains in rapid progressors. Compared with standard progressors, rapid progressor viral strains show higher in-vitro replicative capacity (81.5 vs. 67.9%; P = 0.025) and greater X4/DM co-receptor usage (26.3 vs. 2.8%; P = 0.006) in early infection. Limited or absent functional HIV-1 CD8 T-cell responses and neutralizing activity were measured in rapid progressors. Moreover, the increase in common HLA allele-restricted CD8 T-cell escape mutations in rapid progressors acts as a signature of uncontrolled HIV-1 replication and early impairment of adaptive cellular responses. CONCLUSION:: Our data support a dominant role for viral factors in rapid progressors. Robust HIV-1 replication and intrinsic viral properties limit host adaptive immune responses, thus driving rapid disease progression.
Resumo:
The geometry and connectivity of fractures exert a strong influence on the flow and transport properties of fracture networks. We present a novel approach to stochastically generate three-dimensional discrete networks of connected fractures that are conditioned to hydrological and geophysical data. A hierarchical rejection sampling algorithm is used to draw realizations from the posterior probability density function at different conditioning levels. The method is applied to a well-studied granitic formation using data acquired within two boreholes located 6 m apart. The prior models include 27 fractures with their geometry (position and orientation) bounded by information derived from single-hole ground-penetrating radar (GPR) data acquired during saline tracer tests and optical televiewer logs. Eleven cross-hole hydraulic connections between fractures in neighboring boreholes and the order in which the tracer arrives at different fractures are used for conditioning. Furthermore, the networks are conditioned to the observed relative hydraulic importance of the different hydraulic connections by numerically simulating the flow response. Among the conditioning data considered, constraints on the relative flow contributions were the most effective in determining the variability among the network realizations. Nevertheless, we find that the posterior model space is strongly determined by the imposed prior bounds. Strong prior bounds were derived from GPR measurements and helped to make the approach computationally feasible. We analyze a set of 230 posterior realizations that reproduce all data given their uncertainties assuming the same uniform transmissivity in all fractures. The posterior models provide valuable statistics on length scales and density of connected fractures, as well as their connectivity. In an additional analysis, effective transmissivity estimates of the posterior realizations indicate a strong influence of the DFN structure, in that it induces large variations of equivalent transmissivities between realizations. The transmissivity estimates agree well with previous estimates at the site based on pumping, flowmeter and temperature data.
Resumo:
The immune response is crucial for protection against disease; however, immunological imbalances can lead to heart and digestive tract lesions in chagasic patients. Several studies have evaluated the cellular and humoral immune responses in chagasic patients in an attempt to correlate immunological findings with clinical forms of Chagas disease. Moreover, immunoglobulins and cytokines are important for parasitic control and are involved in lesion genesis. Here, cytokine and IgG isotype production were studied, using total epimastigote antigen on sera of chagasic patients with indeterminate (IND, n = 27) and cardiac (CARD, n = 16) forms of the disease. Samples from normal, uninfected individuals (NI, n = 30) were use as controls. The results showed that sera from both IND and CARD patients contained higher levels of Trypanosoma cruzi-specific IgG1 (IgG1) antibodies than sera from NI. No difference in IgG2 production levels was observed between NI, IND and CARD patients, nor was a difference in IL-10 and IFN-³ production detected in the sera of IND, CARD and NI patients. However, IND patients displayed a positive correlation between IL-10 and IFN-³ levels in serum, while CARD patients showed no such correlation, indicating an uncontrolled inflammatory response in CARD patients. These findings support the hypothesis that a lack of efficient regulation between IFN-³ and IL-10 productions in CARD patients may lead to cardiac immunopathology.
Resumo:
Toxoplasma gondii has a very wide intermediate host range and is thought to be able to infect all warm blooded animals. The parasite causes a spectrum of different diseases and clinical symptoms within the intermediate hosts and following infection most animals develop adaptive humoral and cell-mediated immune responses. The development of protective immunity to T. gondii following natural infection in many host species has led researchers to look at vaccination as a strategy to control disease, parasite multiplication and establishment in animal hosts. A range of different veterinary vaccines are required to help control T. gondii infection which include vaccines to prevent congenital toxoplasmosis, reduce or eliminate tissue cysts in meat producing animals and to prevent oocyst shedding in cats. In this paper we will discuss some of the history, challenges and progress in the development of veterinary vaccines against T. gondii.