857 resultados para Homeless pathways
Resumo:
Until recently, a capacity for apoptosis and synthesis of nitric oxide (⋅NO) were viewed as exclusive to multicellular organisms. The existence of these processes in unicellular parasites was recently described, with their biological significance remaining to be elucidated. We have evaluated l-arginine metabolism in Trypanosoma cruzi in the context of human serum-induced apoptotic death. Apoptosis was evidenced by the induction of DNA fragmentation and the inhibition of [3H]thymidine incorporation, which were inhibited by the caspase inhibitor Ac-Asp-Glu-Val-aspartic acid aldehyde (DEVD-CHO). In T. cruzi exposed to death stimuli, supplementation with l-arginine inhibited DNA fragmentation, restored [3H]thymidine incorporation, and augmented parasite ⋅NO production. These effects were inhibited by the ⋅NO synthase inhibitor Nω-nitroarginine methyl ester (l-NAME). Exogenous ⋅NO limited DNA fragmentation but did not restore proliferation rates. Because l-arginine is also a substrate for arginine decarboxylase (ADC), and its product agmatine is a precursor for polyamine synthesis, we evaluated the contribution of polyamines to limiting apoptosis. Addition of agmatine, putrescine, and the polyamines spermine and spermidine to T. cruzi sustained parasite proliferation and inhibited DNA fragmentation. Also, the ADC inhibitor difluoromethylarginine inhibited l-arginine-dependent restoration of parasite replication rates, while the protection from DNA fragmentation persisted. In aggregate, these results indicate that T. cruzi epimastigotes can undergo programmed cell death that can be inhibited by l-arginine by means of (i) a ⋅NO synthase-dependent ⋅NO production that suppresses apoptosis and (ii) an ADC-dependent production of polyamines that support parasite proliferation.
Resumo:
Extraembryonic ectoderm-derived factors instruct the pluripotent epiblast cells to develop toward a restricted primordial germ cell (PGC) fate during murine gastrulation. Genes encoding Bmp4 of the Dpp class and Bmp8b of the 60A class are expressed in the extraembryonic ectoderm and targeted mutation of either results in severe defects in PGC formation. It has been shown that heterodimers of DPP and 60A classes of bone morphogenetic proteins (BMPs) are more potent than each homodimers in bone and mesoderm induction in vitro, suggesting that BMP4 and BMP8B may form heterodimers to induce PGCs. To investigate how BMP4 and BMP8B interact and signal for PGC induction, we cocultured epiblasts of embryonic day 6.0–6.25 embryos with BMP4 and BMP8B proteins produced by COS cells. Our data show that BMP4 or BMP8B homodimers alone cannot induce PGCs whereas they can in combination, providing evidence that two BMP pathways are simultaneously required for the generation of a given cell type in mammals and also providing a prototype method for PGC induction in vitro. Furthermore, the PGC defects of Bmp8b mutants can be rescued by BMP8B homodimers whereas BMP4 homodimers cannot mitigate the PGC defects of Bmp4 null mutants, suggesting that BMP4 proteins are also required for epiblast cells to gain germ-line competency before the synergistic action of BMP4 and BMP8B.
Resumo:
Two major pathways of recombination-dependent DNA replication, “join-copy” and “join-cut-copy,” can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses.
Resumo:
The docking protein FRS2α has been implicated as a mediator of signaling via fibroblast growth factor receptors (FGFRs). We have demonstrated that targeted disruption of FRS2α gene causes severe impairment in mouse development resulting in embryonal lethality at E7.0–E7.5. Experiments with FRS2α-deficient fibroblasts demonstrate that FRS2α plays a critical role in FGF-induced mitogen-activated protein (MAP) kinase stimulation, phosphatidylinositol-3 (PI-3) kinase activation, chemotactic response, and cell proliferation. Following FGF stimulation, tyrosine phosphorylated FRS2α functions as a site for coordinated assembly of a multiprotein complex that includes Gab1 and the effector proteins that are recruited by this docking protein. Furthermore, we demonstrate that different tyrosine phosphorylation sites on FRS2α are responsible for mediating different FGF-induced biological responses. These experiments establish the central role of FRS2α in signaling via FGFRs and demonstrate that FRS2α mediates multiple FGFR-dependent signaling pathways critical for embryonic development.
Resumo:
Nontypeable Hemophilus influenzae (NTHi) is an important human pathogen in both children and adults. In children, it causes otitis media, the most common childhood infection and the leading cause of conductive hearing loss in the United States. In adults, it causes lower respiratory tract infections in the setting of chronic obstructive pulmonary disease, the fourth leading cause of death in the United States. The molecular mechanisms underlying the pathogenesis of NTHi-induced infections remain undefined, but they may involve activation of NF-κB, a transcriptional activator of multiple host defense genes involved in immune and inflammatory responses. Here, we show that NTHi strongly activates NF-κB in human epithelial cells via two distinct signaling pathways, NF-κB translocation-dependent and -independent pathways. The NF-κB translocation-dependent pathway involves activation of NF-κB inducing kinase (NIK)–IKKα/β complex leading to IκBα phosphorylation and degradation, whereas the NF-κB translocation-independent pathway involves activation of MKK3/6–p38 mitogen-activated protein (MAP) kinase pathway. Bifurcation of NTHi-induced NIK–IKKα/β-IκBα and MKK3/6–p38 MAP kinase pathways may occur at transforming growth factor-β activated kinase 1 (TAK1). Furthermore, we show that toll-like receptor 2 (TLR2) is required for NTHi-induced NF-κB activation. In addition, several key inflammatory mediators including IL-1β, IL-8, and tumor necrosis factor-α are up-regulated by NTHi. Finally, P6, a 16-kDa lipoprotein highly conserved in the outer membrane of all NTHi and H. influenzae type b strains, appears to also activate NF-κB via similar signaling pathways. Taken together, our results demonstrate that NTHi activates NF-κB via TLR2–TAK1-dependent NIK–IKKα/β-IκBα and MKK3/6–p38 MAP kinase signaling pathways. These studies may bring new insights into molecular pathogenesis of NTHi-induced infections and open up new therapeutic targets for these diseases.
Resumo:
Past studies have shown that epidermal growth factor (EGF) is able to mimic the uterotropic effects of estrogen in the rodent. These studies have suggested a "cross-talk" model in which EGF receptor (EGF-R) signaling results in activation of nuclear estrogen receptor (ER) and its target genes in an estrogen-independent manner. Furthermore, in vitro studies have indicated the requirement for ER in this mechanism. To verify the requirement for ER in an in vivo system, EGF effects were studied in the uteri of ER knockout (ERKO) mice, which lack functional ER. The EGF-R levels, autophosphorylation, and c-fos induction were observed at equivalent levels in both genotypes indicating that removal of ER did not disrupt the EGF responses. Induction of DNA synthesis and the progesterone receptor gene in the uterus were measured after EGF treatment of both ERKO and wild-type animals. Wild-type mice showed increases of 4.3-fold in DNA synthesis, as well as an increase in PR mRNA after EGF treatment. However, these responses were absent in ERKO mice, confirming that the estrogen-like effects of EGF in the mouse uterus do indeed require the ER. These data conclusively demonstrate the coupling of EGF and ER signaling pathways in the rodent reproductive tract.
Resumo:
Angiotensin (Ang) II and Ang III are two peptide effectors of the brain renin-angiotensin system that participate in the control of blood pressure and increase water consumption and vasopressin release. In an attempt to delineate the respective roles of these peptides in the regulation of vasopressin secretion, their metabolic pathways and their effects on vasopressin release were identified in vivo. For this purpose, we used recently developed selective inhibitors of aminopeptidase A (APA) and aminopeptidase N (APN), two enzymes that are believed to be responsible for the N-terminal cleavage of Ang II and Ang III, respectively. Mice received [3H]Ang II intracerebroventricularly (i.c.v.) in the presence or absence of the APN inhibitor, EC33 (3-amino-4-thio-butyl sulfonate) of the APN inhibitor, EC27 (2-amino-pentan-1,5-dithiol). [3H]Ang II and [3H]Ang III levels were evaluated from hypothalamus homogenates by HPLC. EC33 increased the half-life of [3H]Ang II 2.6-fold and completely blocked the formation of [3H]Ang III, whereas EC27 increased the half-life of [3H]Ang III 2.3-fold. In addition, the effects of EC33 and EC27 on Ang-induced vasopressin release were studied in mice. Ang II was injected i.c.v. in the presence or absence of EC33, and plasma vasopressin levels were estimated by RIA. While vasopressin levels were increased 2-fold by Ang II (5 ng), EC33 inhibited Ang II-induced vasopressin release in a dose-dependent manner. In contrast, EC27 injected alone increased in a dose-dependent manner vasopressin levels. The EC27-induced vasopressin release was completely blocked by the coadministration of the Ang receptor antagonist (Sar1-Ala8) Ang II. These results demonstrate for the first time that (i) APA and APN are involved in vivo in the metabolism of brain Ang II and Ang III, respectively, and that (ii) the action of Ang II on vasopressin release depends upon the prior conversion of Ang II to Ang III. This shows that Ang III behaves as one of the main effector peptides of the brain renin-angiotensin system in the control of vasopressin release.
Resumo:
With use of the yeast two-hybrid system, the proteins RIP and FADD/MORT1 have been shown to interact with the "death domain" of the Fas receptor. Both of these proteins induce apoptosis in mammalian cells. Using receptor fusion constructs, we provide evidence that the self-association of the death domain of RIP by itself is sufficient to elicit apoptosis. However, both the death domain and the adjacent alpha-helical region of RIP are required for the optimal cell killing induced by the overexpression of this gene. By contrast, FADD's ability to induce cell death does not depend on crosslinking. Furthermore, RIP and FADD appear to activate different apoptotic pathways since RIP is able to induce cell death in a cell line that is resistant to the apoptotic effects of Fas, tumor necrosis factor, and FADD. Consistent with this, a dominant negative mutant of FADD, lacking its N-terminal domain, blocks apoptosis induced by RIP but not by FADD. Since both pathways are blocked by CrmA, the interleukin 1 beta converting enzyme family protease inhibitor, these results suggest that FADD and RIP can act along separable pathways that nonetheless converge on a member of the interleukin 1 beta converting enzyme family of cysteine proteases.
Resumo:
An important component of cytokine regulation of cell growth and differentiation is rapid transcriptional activation of genes by the JAK-STAT (signal transducer and activator of transcription) signaling pathway. Ligation of cytokine receptors results in tyrosine phosphorylation and activation of receptor-associated Jak protein tyrosine kinases and cytoplasmic STAT transcription factors, which then translocate to the nucleus. We describe the interruption of cytokine triggered JAK-STAT signals by cAMP, the calcium ionophore ionomycin, and granulocyte/macrophage colony-stimulating factor. Jak1 kinase activity, interleukin 6-induced gene activation, Stat3 tyrosine phosphorylation, and DNA-binding were inhibited, as was activation of Jak1 and Stat1 by interferon gamma. The kinetics and requirement for new RNA and protein synthesis for inhibition of interleukin 6 by ionomycin and GM-CSF differed, but both agents increased the association of Jak1 with protein tyrosine phosphatase ID (SH2-containing phosphatase 2). Our results demonstrate that crosstalk with distinct signaling pathways can inhibit JAK-STAT signal transduction, and suggest approaches for modulating cytokine activity during immune responses and inflammatory processes.
Resumo:
Interpretation of quantitative trait locus (QTL) studies of agronomic traits is limited by lack of knowledge of biochemical pathways leading to trait expression. To more fully elucidate the biological significance of detected QTL, we chose a trait that is the product of a well-characterized pathway, namely the concentration of maysin, a C-glycosyl flavone, in silks of maize, Zea mays L. Maysin is a host-plant resistance factor against the corn earworm, Helicoverpa zea (Boddie). We determined silk maysin concentrations and restriction fragment length polymorphism genotypes at flavonoid pathway loci or linked markers for 285 F2 plants derived from the cross of lines GT114 and GT119. Single-factor analysis of variance indicated that the p1 region on chromosome 1 accounted for 58.0% of the phenotypic variance and showed additive gene action. The p1 locus is a transcription activator for portions of the flavonoid pathway. A second QTL, represented by marker umc 105a near the brown pericarp1 locus on chromosome 9, accounted for 10.8% of the variance. Gene action of this region was dominant for low maysin, but was only expressed in the presence of a functional p1 allele. The model explaining the greatest proportion of phenotypic variance (75.9%) included p1, umc105a, umc166b (chromosome 1), r1 (chromosome 10), and two epistatic interaction terms, p1 x umc105a and p1 x r1. Our results provide evidence that regulatory loci have a central role and that there is a complex interplay among different branches of the flavonoid pathway in the expression of this trait.
Resumo:
Cytotoxic T lymphocytes are important effectors of antiviral immunity, and they induce target cell death either by secretion of cytoplasmic granules containing perforin and granzymes or by signaling through the Fas cell surface antigen. Although it is not known whether the granule-mediated and Fas-mediated cytolytic mechanisms share common components, proteinase activity has been implicated as an important feature of both pathways. The orthopoxviruses cowpox virus and rabbitpox virus each encode three members of the serpin family of proteinase inhibitors, designated SPI-1, SPI-2, and SPI-3. Of these, SPI-2 (also referred to as cytokine response modifier A in cowpox virus) has been shown to inhibit the proteolytic activity of both members of the interleukin 1 beta converting enzyme family and granzyme B. We report here that cells infected with cowpox or rabbitpox viruses exhibit resistance to cytolysis by either cytolytic mechanism. Whereas mutation of the cytokine response modifier A/SPI-2 gene was necessary to relieve inhibition of Fasmediated cytolysis, in some cell types mutation of SPI-1, in addition to cytokine response modifier A/SPI-2, was necessary to completely abrogate inhibition. In contrast, viral inhibition of granule-mediated killing was unaffected by mutation of cytokine response modifier A/SPI-2 alone, and it was relieved only when both the cytokine response modifier A/SPI-2 and SPI-1 genes were inactivated. These results suggest that an interleukin 1 beta converting enzyme-like enzymatic activity is involved in both killing mechanisms and indicate that two viral proteins, SPI-1 and cytokine response modifier A/SPI-2, are necessary to inhibit both cytolysis pathways.
Resumo:
The gene encoding tissue-type plasminogen activator (t-PA) is an immediate response gene, downstream from CREB-1 and other constitutively expressed transcription factors, which is induced in the hippocampus during the late phase of long-term potentiation (L-LTP). Mice in which the t-PA gene has been ablated (t-PA-/-) showed no gross anatomical, electrophysiological, sensory, or motor abnormalities but manifest a selective reduction in L-LTP in hippocampal slices in both the Schaffer collateral-CA1 and mossy fiber-CA3 pathways. t-PA-/- mice also exhibit reduced potentiation by cAMP analogs and D1/D5 agonists. By contrast, hippocampal-dependent learning and memory were not affected in these mice, whereas performance was impaired on two-way active avoidance, a striatum-dependent task. These results provide genetic evidence that t-PA is a downstream effector gene important for L-LTP and show that modest impairment of L-LTP in CA1 and CA3 does not result in hippocampus-dependent behavioral phenotypes.
Resumo:
Nitric oxide (NO) produced opposite effects on acetylcholine (ACh) release in identified neuroneuronal Aplysia synapses depending on the excitatory or the inhibitory nature of the synapse. Extracellular application of the NO donor, SIN-1, depressed the inhibitory postsynaptic currents (IPSCs) and enhanced the excitatory postsynaptic currents (EPSCs) evoked by presynaptic action potentials (1/60 Hz). Application of a membrane-permeant cGMP analog mimicked the effect of SIN-1 suggesting the participation of guanylate cyclase in the NO pathway. The guanylate cyclase inhibitor, methylene blue, blocked the NO-induced enhancement of EPSCs but only reduced the inhibition of IPSCs indicating that an additional mechanism participates to the depression of synaptic transmission by NO. Using nicotinamide, an inhibitor of ADP-ribosylation, we found that the NO-induced depression of ACh release on the inhibitory synapse also involves ADP-ribosylation mechanism(s). Furthermore, application of SIN-1 paired with cGMP-dependent protein kinase (cGMP-PK) inhibitors showed that cGMP-PK could play a role in the potentiating but not in the depressing effect of NO on ACh release. Increasing the frequency of stimulation of the presynaptic neuron from 1/60 Hz to 0.25 or 1 Hz potentiated the EPSCs and reduced the IPSCs. In these conditions, the potentiating effect of NO on the excitatory synapse was reduced, whereas its depressing effect on the inhibitory synapse was unaffected. Moreover the frequency-dependent enhancement of ACh release in the excitatory synapse was greatly reduced by the inhibition of NO synthase. Our results indicate that NO may be involved in different ways of modulation of synaptic transmission depending on the type of the synapse including synaptic plasticity.
Resumo:
Synapses of the hippocampal mossy fiber pathway exhibit several characteristic features, including a unique form of long-term potentiation that does not require activation of the N-methyl-D-aspartate receptor by glutamate, a complex postsynaptic architecture, and sprouting in response to seizures. However, these connections have proven difficult to study in hippocampal slices because of their relative paucity (<0.4%) compared to commissural-collateral synapses. To overcome this problem, we have developed a novel dissociated cell culture system in which we have enriched mossy fiber synapses by increasing the ratio of granule-to-pyramidal cells. As in vivo, mossy fiber connections are composed of large dynorphin A-positive varicosities contacting complex spines (but without a restricted localization). The elementary synaptic connections are glutamatergic, inhibited by dynorphin A, and exhibit N-methyl-D-aspartate-independent long-term potentiation. Thus, the simplicity and experimental accessibility of this enriched in vitro mossy fiber pathway provides a new perspective for studying nonassociative plasticity in the mammalian central nervous system.
Resumo:
A new approach to the analysis of metabolic pathways involving poorly water-soluble intermediates is proposed. It relies upon the ability of the hydrophobic intermediates formed by a sequence of intracellular reactions to cross the membrane(s) and partition between aqueous and organic phases, when cells are incubated in the presence of a nonpolar and nontoxic organic solvent. As a result of this thermodynamically driven efflux of the formed intermediates from the cell, they accumulate in the organic medium in sufficient quantities for GC-MS analysis and identification. This enables direct determination of the sequence of chemical reactions involved with no requirement for the isolation of each individual metabolite from a cell-free extract. The feasibility of the proposed methodology has been demonstrated by the elucidation of the biosynthesis of (R)-gamma-decalactone from (R)-ricinoleic acid catalyzed by the yeast Sporidiobolus ruinenii grown in the presence of decane. The corresponding 4-hydroxy-acid intermediates, formed in the course of beta-oxidation of (R)-ricinoleic acid, were simultaneously observed in a single experiment on the same chromatogram. Potential applications of this proposed methodology are briefly discussed.