928 resultados para Highest occupied molecular orbital energy levels
Resumo:
Quatrocentas aves com peso médio de 675,00 g foram distribuídas em delineamento de blocos casualizados, com base no peso das aves, com cinco tratamentos e quatro repetições. As dietas experimentais foram constituídas de cinco níveis de energia metabolizável (2.800, 2.900, 3.000, 3.100 e 3.200 kcal de EM/kg de ração) formuladas para atender às exigências nutricionais, exceto de energia metabolizável. O aumento do nível de energia das rações foi obtido pela adição de óleo de soja. Realizaram-se análises de variância e de regressão, associando-se os níveis de energia aos valores das variáveis estudadas. As aves foram avaliadas quanto ao desempenho (consumo de ração, ganho de peso e conversão alimentar) e às características de carcaça nos períodos de 22 a 35 dias, 36 a 42 dias, 43 aos 49 dias e de 22 a 49 dias de idade. O ganho de peso e a conversão alimentar de frangos de corte da linhagem Hubbard mantidos em ambiente de alta temperatura não são influenciados pelos níveis de energia metabolizável da ração. Os níveis de energia da dieta não afetam os rendimentos de carcaça, coxa, sobrecoxa, asa, tulipa, moela coração fígado, proventrículo e intestino. Entretanto, a gordura abdominal aumenta e o rendimento de peito decresce proporcionalmente à elevação da energia da dieta em ambiente de altas temperaturas.
Resumo:
Um experimento foi conduzido com o objetivo de avaliar os desempenhos reprodutivo e zootécnico e a deposição de lipídios no tecido hepático de fêmeas de tilápia-do-nilo alimentadas com rações contendo diferentes níveis de energia digestível, obtidos pela inclusão de óleo de soja. Foram utilizados 100 reprodutores e 300 reprodutoras, distribuídos em delineamento inteiramente casualizado com cinco tratamentos e quatro repetições. Os reprodutores, machos e fêmeas, foram alimentados com rações contendo, por quilograma, 35% de proteína bruta e 2.700, 2.950, 3.200, 3.450 ou 3.700 kcal de energia digestível. Os animais foram mantidos em hapas por 93 dias. O desempenho reprodutivo e zootécnico não foi influenciado pelos níveis energéticos das rações, o que pode estar relacionado ao curto período de tempo de alimentação com as dietas experimentais. Contudo, o aumento nos níveis de energia teve efeito linear nas deposições lipídicas nos hepatócitos. Desta forma, os níveis crescentes de energia digestível nas rações fornecidas às fêmeas de tilápia-do-nilo, obtidos pela inclusão de óleo de soja, apenas aumentam o tempo de sobrevivência das larvas ao jejum e a deposição de lipídios nos hepatócitos das fêmeas.
Resumo:
O experimento foi conduzido com o objetivo de avaliar o desempenho reprodutivo e zootécnico e a deposição de lipídios no tecido hepático de machos de tilápia-do-nilo alimentados com rações contendo diferentes níveis de energia digestível, obtidos com a inclusão de óleo de soja. Foram utilizados 400 reprodutores (300 fêmeas e 100 machos) distribuídos em delineamento inteiramente casualizado, composto de cinco níveis de energia digestível (2.700, 2.950, 3.200, 3.450 e 3.700 kcal.kg de ração-1) e quatro repetições. Os reprodutores foram alimentados com rações contendo 35% de proteína bruta e submetidos ao manejo reprodutivo em hapas por 101 dias. O melhor resultado de concentração espermática e percentual de espermatozoides normais foram obtidos para reprodutores alimentados com rações contendo 3.465,56 e 3.443,43 kcal. kg de ração-1, que produziram 7,98 × 10(9) espermatozoides.mL de sêmen-1 e 38,98% de espermatozoides normais, respectivamente. A produção de sêmen, o pH seminal, o índice de sobrevivência espermática e o tempo de ativação espermática não foram afetados pelos níveis energéticos das rações. Os níveis de energia das rações não influenciaram o desempenho zootécnico dos peixes, mas promoveram aumento linear na deposição de lipídios nos hepatócitos e afetaram a qualidade seminal, estimulando a produção de espermatozoides e a melhora dos índices de normalidade da morfologia espermática em níveis energéticos próximos a 3.450 kcal. kg de ração-1.
Resumo:
An experiment with 400 laying hens Hy Line with 26 weeks of age was conducted to compare the performance of laying hens fed during four cycles of 28 days with diets containing soybean meal (SM) plus soybean oil (SBM+oil), whole extruded soybean (ESB) and whole steam toasted soybean (TSB). A completely design randomized blocks was used, with 10 treatments and five replicates and eight laying hens in each experimental unit. The treatments consisted on the replacement of SBM per ESB and TSB at the levels 0, 25, 50, 75 and 100%; and as control the SBM with or without addition of oil. The results obtained showed that the hens were able to regulate the feed intake to maintain the energy intake only at lower energetic levels, however they tended to over intake energy with the increase of energy levels of the diets. The addition of oil or soybeans in the diets improved feed: gain ratio, however worsened the energy efficiency in relation to the diet without oil. The processing of soybean provided differences on the performance of laying hens and the ESB showed to be superior to TSB. The hens had higher use of the oil added to the soybean meal (SBM + oil) and ESB in relation to TSB. However, the values of AMEn obtained for the ESB were 12% higher, in average, to those determined for the SBM + oil and for the TSB.
Resumo:
Digestibility of diets based on corn and soybean meal or soybeans treated by roasting or extrusion, with or without an enzyme supplementation, was measured by true (Sibbald) methods, by analysis of excreta, and by analysis of ileal digesta. Only analysis of ileal digesta was able to consistently measure differences between soybean and enzyme treatments in the digestibility of CP, starch, fat, and ME. The amino acid (AA) digestibility of the diets was measured by analysis of the ileal contents. Whereas enzyme supplementation improved overall CP digestibility by 2.9%, this improvement was not equal for all AA. of the AA most important for broilers fed corn-soybean diets, the digestibilities of Lys, Met, and Arg were not improved or not improved significantly by the enzyme supplementation; however, that of Val was improved by 2.3% and that of Thr was improved by 3.0%. A performance trial demonstrated that enzyme supplementation with equal diet formulation improved BW and the feed conversion ratio by 1.9 and 2.2%, respectively. A second performance trial compared standard diet formulations with formulations using enzyme supplementation and energy levels that were reduced by the amount of improvement provided by the inclusion of enzyme in the first performance trial. No difference was seen between treatments, showing that the improvement of nutrient utilization brought about by enzyme supplementation completely compensated for the reduced energy content. Whereas enzyme supplementation should allow a reduction in CP formulation as well, individual AA were not improved equally by supplementation and should also be balanced.
Resumo:
Temperature investigation of infrared-to-visible frequency upconversion in erbium-doped tellurite glasses excited by CW laser radiation at 1540 nm and under cryogenic temperatures is reported. Intense upconversion emission signals around 530, 550 and 660 nm corresponding to the H-2(11/2), S-4(3/2), and F-4(9/2) transitions to the I-4(15/2) ground state were generated and studied as a function of the laser intensity and temperature. The upconversion excitation mechanism of the Er3+ ions emitting energy levels was accomplished via stepwise multiphoton absorption. The green upconversion luminescence exhibited a fivefold intensity enhancement when the temperature of the sample was varied in the range between 5 and 300 K. A maximum green upconversion intensity was attained around 120 K and a steady decreasing behavior for higher temperatures up to 300 K was observed. A model based upon conventional rate equations was used to model the observed temperature evolution of the upconversion luminescence. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
This study was conducted to analyze the ablation rate and micromorphological aspects of microcavities in enamel and dentin of primary and permanent teeth using a Er:YAG laser system. Micromorphological evaluation has been performed in terms of permanent teeth; however, little information about Er: YAG laser interaction with primary teeth can be found in the literature. Because children have been the most beneficiary patients with laser therapy in our offices, it is extremely necessary to compare the effects of this kind of laser system on the enamel and dentin of permanent and primary teeth. In this study, we used eleven intact primary anterior exfoliated teeth and six extracted permanent molar teeth. We used a commercial laser system: a Er: YAG Twin Light laser system (Fotona Medical Lasers, Slovenia) at 2940 nm, changing average energy levels per pulse ( 100, 200, 300, and 400 mJ) producing 48 microcavities in enamel and dentin of primary and permanent teeth. Primary teeth are more easily ablated than are permanent teeth, when related to enamel or dentin. However, while this laser system is capable of slowly revealing the enamel's microstructure, in dentin only the lowest laser energies permit this kind of observation, more easily decomposing the original tissue aspect, when related to primary or permanent teeth. Statistically, the only different factor at the 5% level was an energy per pulse of 400 mJ, confirming the results found in SEM. Our results showed that dentin in both primary and permanent teeth is less resistant to Er: YAG laser ablation; this fact is easily observed under SEM observation and through the ablation rate evaluation.
Resumo:
This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.
Resumo:
We report the observation of negative nonlinear absorption in fluoroindate glasses doped with erbium ions. The pumping wavelength is 800 nm which is doubly resonant with Er3+ ions transitions. A large nonlinear intensity dependence of the optical transmittance and strong upconverted fluorescence are obtained. The dependence of the upconverted fluorescence intensity with the laser power is described by a system of coupled-rate equations for the energy levels' populations. (C) 1998 American Institute of Physics. [S0021-8979(98)07816-5].
Resumo:
In this paper, we report luminescent and morphological studies with yttrium oxide samples doped with ytterbium and erbium. The samples were prepared by the combustion method and also from different precursors: oxalate, basic carbonate and polymeric resin. All powders were identified Lis being an yttrium oxide with a C-form structure, independent of the employed precursor. From mean crystallite size measurements, it was verified that oxides prepared through the polymeric precursor and combustion methods lead to the smallest crystallite size. Particle shape and size were investigated by SEM and TEM, and showed that both the oxalate precursor and the combustion methods do not provide oxide materials of suitable shape or size, on the other hand. The basic carbonate and polymeric precursors resulted in spherically shaped particles with an average diameter of 90 and 15 run. respectively, Upon 980 run diode laser excitation, green and red emission lines were detected for all samples and were assigned to the H-2(11/2) S-4(3/2) -> I-4(15/2) and (4)Fg(9/2) -> 4I(15/12) transitions, respectively. Such transitions are characteristic for Er3+ and result from energy transfer from Yb3+ energy levels, F-2(7/2) -> F-2(5/2). A relationship between the decrease in the mean crystallite size and the enhancement in red emission was also established as well as the influence of the presence of a high percentage of Yb-3 Both factors promote ET from Yb3+ (F-2(5/2)) to Er3+ (I-4(11/2)). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We have used the adiabatic hyperspherical approach to determine the energies and wave functions of the ground state and first excited states of a two-dimensional D- ion in the presence of a magnetic field. Using a modified hyperspherical angular variable, potential energy curves are analytically obtained, allowing an accurate determination of the energy levels of this system. Upper and lower bounds for the ground-state energy have been determined by a non-adiabatic procedure, as the purpose is to improve the accuracy of method. The results are shown to be comparable to the best variational calculations reported in the literature.
Resumo:
The von Neumann-Liouville time evolution equation is represented in a discrete quantum phase space. The mapped Liouville operator and the corresponding Wigner function are explicitly written for the problem of a magnetic moment interacting with a magnetic field and the precessing solution is found. The propagator is also discussed and a time interval operator, associated to a unitary operator which shifts the energy levels in the Zeeman spectrum, is introduced. This operator is associated to the particular dynamical process and is not the continuous parameter describing the time evolution. The pair of unitary operators which shifts the time and energy is shown to obey the Weyl-Schwinger algebra. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Photoluminescence measurements at different temperatures have been performed to investigate the optical response of a two-dimensional electron gas in n-type wide parabolic quantum wells. A series of samples with different well widths in the range of 1000-3000 A was analyzed. Many-body effects, usually observed in the recombination process of a two-dimensional electron gas, appear as a strong enhancement in the photoluminescence spectra at the Fermi level at low temperature only in the thinnest parabolic quantum wells. The suppression of the many-body effect in the thicker quantum wells was attributed to the decrease of the overlap between the wavefunctions of the photocreated holes and the two-dimensional electrons belonging to the highest occupied electron subband. (C) 2007 American Institute of Physics.
Resumo:
In this paper, we have investigated a region of direct stable orbits around the Moon, whose stability is related to the H2 Family of periodic orbits and to the quasi-periodic orbits that oscillate around them. The stability criteria adopted was that the path did not escape from the Moon during an integration period of 1000 days (remaining with negative two-body Moon-probe orbital energy during this period). Considering the three-dimensional four-body Sun-Earth-Moon-probe problem, we investigated the evolution of the size of the stability region, taking into account the eccentricity of the Earth's orbit, the eccentricity and inclination of the Moon's orbit, and the solar radiation pressure on the probe. We also investigated the evolution of the region's size and its location by varying the inclination of the probe's initial osculating orbit relative to the Moon's orbital plane between 0 degrees and 180 degrees. The size of the stability region diminishes; nevertheless, it remains significant for 0 <= i <= 25 degrees and 35 degrees <= i <= 45 degrees. The orbits of this region could be useful for missions by space vehicles that must remain in orbit around the Moon for periods of up to 1000 days, requiring low maintenance costs. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)