930 resultados para Higher order wave moments
Resumo:
Wir betrachten zeitabhängige Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängi- gen Gebieten, wobei die Bewegung des Gebietsrandes bekannt ist. Die zeitliche Entwicklung des Gebietes wird durch die ALE-Formulierung behandelt, die die Nachteile der klassischen Euler- und Lagrange-Betrachtungsweisen behebt. Die Position des Randes und seine Geschwindigkeit werden dabei so in das Gebietsinnere fortgesetzt, dass starke Gitterdeformationen verhindert werden. Als Zeitdiskretisierungen höherer Ordnung werden stetige Galerkin-Petrov-Verfahren (cGP) und unstetige Galerkin-Verfahren (dG) auf Probleme in zeitabhängigen Gebieten angewendet. Weiterhin werden das C 1 -stetige Galerkin-Petrov-Verfahren und das C 0 -stetige Galerkin- Verfahren vorgestellt. Deren Lösungen lassen sich auch in zeitabhängigen Gebieten durch ein einfaches einheitliches Postprocessing aus der Lösung des cGP-Problems bzw. dG-Problems erhalten. Für Problemstellungen in festen Gebieten und mit zeitlich konstanten Konvektions- und Reaktionstermen werden Stabilitätsresultate sowie optimale Fehlerabschätzungen für die nachbereiteten Lösungen der cGP-Verfahren und der dG-Verfahren angegeben. Für zeitabhängige Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängigen Gebieten präsentieren wir konservative und nicht-konservative Formulierungen, wobei eine besondere Aufmerksamkeit der Behandlung der Zeitableitung und der Gittergeschwindigkeit gilt. Stabilität und optimale Fehlerschätzungen für die in der Zeit semi-diskretisierten konservativen und nicht-konservativen Formulierungen werden vorgestellt. Abschließend wird das volldiskretisierte Problem betrachtet, wobei eine Finite-Elemente-Methode zur Ortsdiskretisierung der Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängigen Gebieten im ALE-Rahmen einbezogen wurde. Darüber hinaus wird eine lokale Projektionsstabilisierung (LPS) eingesetzt, um der Konvektionsdominanz Rechnung zu tragen. Weiterhin wird numerisch untersucht, wie sich die Approximation der Gebietsgeschwindigkeit auf die Genauigkeit der Zeitdiskretisierungsverfahren auswirkt.
Resumo:
Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling.
Resumo:
Purpose The aim of the study is to explore the role of confluent learning in supporting the development of change management knowledge, skills and attitudes and to inform the creation of a conceptual model based upon a priori and a posteriori knowledge gained from literature and the research. Design/methodology/approach The research adopts qualitative approach based on reflective inquiry methodology. There are two primary data sources, interviews with learners and the researchers’ reflective journals on learners’ opinions. Findings The confluent learning approach helped to stimulate affective states (e.g. interest and appreciation) to further reinforce cognitive gains (e.g. retention of knowledge) as a number of higher order thinking skills were further developed. The instructional design premised upon confluent learning enabled learners to further appreciate the complexities of change management. Research implications/ limitations The confluent learning approach offers another explanation to how learning takes place, contingent upon the use of a problem solving framework, instructional design and active learning in developing inter- and trans-disciplinary competencies. Practical implications This study not only explains how effective learning takes place but is also instructive to learning and teaching, and human resource development (HRD) professionals in curriculum design and the potential benefits of confluent learning. Social implications The adoption of a confluent learning approach helps to re-naturalise learning that appeals to learners affect. Originality/value This research is one of the few studies that provide an in-depth exploration of the use of confluent learning and how this approach co-develops cognitive abilities and affective capacity in the creation of a conceptual model.
Resumo:
We consider a second-order variational problem depending on the covariant acceleration, which is related to the notion of Riemannian cubic polynomials. This problem and the corresponding optimal control problem are described in the context of higher order tangent bundles using geometric tools. The main tool, a presymplectic variant of Pontryagin’s maximum principle, allows us to study the dynamics of the control problem.
Resumo:
Nucleic acids play key roles in the storage and processing of genetic information, as well as in the regulation of cellular processes. Consequently, they represent attractive targets for drugs against gene-related diseases. On the other hand, synthetic oligonucleotide analogues have found application as chemotherapeutic agents targeting cellular DNA and RNA. The development of effective nucleic acid-based chemotherapeutic strategies requires adequate analytical techniques capable of providing detailed information about the nucleotide sequences, the presence of structural modifications, the formation of higher-order structures, as well as the interaction of nucleic acids with other cellular components and chemotherapeutic agents. Due to the impressive technical and methodological developments of the past years, tandem mass spectrometry has evolved to one of the most powerful tools supporting research related to nucleic acids. This review covers the literature of the past decade devoted to the tandem mass spectrometric investigation of nucleic acids, with the main focus on the fundamental mechanistic aspects governing the gas-phase dissociation of DNA, RNA, modified oligonucleotide analogues, and their adducts with metal ions. Additionally, recent findings on the elucidation of nucleic acid higher-order structures by tandem mass spectrometry are reviewed.
Resumo:
In this paper, we focus on a Riemann–Hilbert boundary value problem (BVP) with a constant coefficients for the poly-Hardy space on the real unit ball in higher dimensions. We first discuss the boundary behaviour of functions in the poly-Hardy class. Then we construct the Schwarz kernel and the higher order Schwarz operator to study Riemann–Hilbert BVPs over the unit ball for the poly- Hardy class. Finally, we obtain explicit integral expressions for their solutions. As a special case, monogenic signals as elements in the Hardy space over the unit sphere will be reconstructed in the case of boundary data given in terms of functions having values in a Clifford subalgebra. Such monogenic signals represent the generalization of analytic signals as elements of the Hardy space over the unit circle of the complex plane.
Resumo:
Valveless pulsejets are extremely simple aircraft engines; essentially cleverly designed tubes with no moving parts. These engines utilize pressure waves, instead of machinery, for thrust generation, and have demonstrated thrust-to-weight ratios over 8 and thrust specific fuel consumption levels below 1 lbm/lbf-hr – performance levels that can rival many gas turbines. Despite their simplicity and competitive performance, they have not seen widespread application due to extremely high noise and vibration levels, which have persisted as an unresolved challenge primarily due to a lack of fundamental insight into the operation of these engines. This thesis develops two theories for pulsejet operation (both based on electro-acoustic analogies) that predict measurements better than any previous theory reported in the literature, and then uses them to devise and experimentally validate effective noise reduction strategies. The first theory analyzes valveless pulsejets as acoustic ducts with axially varying area and temperature. An electro-acoustic analogy is used to calculate longitudinal mode frequencies and shapes for prescribed area and temperature distributions inside an engine. Predicted operating frequencies match experimental values to within 6% with the use of appropriate end corrections. Mode shapes are predicted and used to develop strategies for suppressing higher modes that are responsible for much of the perceived noise. These strategies are verified experimentally and via comparison to existing models/data for valveless pulsejets in the literature. The second theory analyzes valveless pulsejets as acoustic systems/circuits in which each engine component is represented by an acoustic impedance. These are assembled to form an equivalent circuit for the engine that is solved to find the frequency response. The theory is used to predict the behavior of two interacting pulsejet engines. It is validated via comparison to experiment and data in the literature. The technique is then used to develop and experimentally verify a method for operating two engines in anti-phase without interfering with thrust production. Finally, Helmholtz resonators are used to suppress higher order modes that inhibit noise suppression via anti-phasing. Experiments show that the acoustic output of two resonator-equipped pulsejets operating in anti-phase is 9 dBA less than the acoustic output of a single pulsejet.
Resumo:
In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier-Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint second-order elliptic partial differential equations. In order to solve the resulting system of nonlinear equations, we exploit a (damped) Newton-GMRES algorithm. Numerical experiments demonstrating the practical performance of the proposed discontinuous Galerkin method with higher-order polynomials are presented.
Resumo:
The Herglotz problem is a generalization of the fundamental problem of the calculus of variations. In this paper, we consider a class of non-differentiable functions, where the dynamics is described by a scale derivative. Necessary conditions are derived to determine the optimal solution for the problem. Some other problems are considered, like transversality conditions, the multi-dimensional case, higher-order derivatives and for several independent variables.
Resumo:
PURPOSE: To analyze the outcomes of intracorneal ring segment (ICRS) implantation for the treatment of keratoconus based on preoperative visual impairment. DESIGN: Multicenter, retrospective, nonrandomized study. METHODS: A total of 611 eyes of 361 keratoconic patients were evaluated. Subjects were classified according to their preoperative corrected distance visual acuity (CDVA) into 5 different groups: grade I, CDVA of 0.90 or better; grade II, CDVA equal to or better than 0.60 and worse than 0.90; grade III, CDVA equal to or better than 0.40 and worse than 0.60; grade IV, CDVA equal to or better than 0.20 and worse than 0.40; and grade plus, CDVA worse than 0.20. Success and failure indices were defined based on visual, refractive, corneal topographic, and aberrometric data and evaluated in each group 6 months after ICRS implantation. RESULTS: Significant improvement after the procedure was observed regarding uncorrected distance visual acuity in all grades (P < .05). CDVA significantly decreased in grade I (P < .01) but significantly increased in all other grades (P < .05). A total of 37.9% of patients with preoperative CDVA 0.6 or better gained 1 or more lines of CDVA, whereas 82.8% of patients with preoperative CDVA 0.4 or worse gained 1 or more lines of CDVA (P < .01). Spherical equivalent and keratometry readings showed a significant reduction in all grades (P ≤ .02). Corneal higher-order aberrations did not change after the procedure (P ≥ .05). CONCLUSIONS: Based on preoperative visual impairment, ICRS implantation provides significantly better results in patients with a severe form of the disease. A notable loss of CDVA lines can be expected in patients with a milder form of keratoconus.
Resumo:
This paper reports an investigation into the link between failed proofs and non-theorems. It seeks to answer the question of whether anything more can be learned from a failed proof attempt than can be discovered from a counter-example. We suggest that the branch of the proof in which failure occurs can be mapped back to the segments of code that are the culprit, helping to locate the error. This process of tracing provides finer grained isolation of the offending code fragments than is possible from the inspection of counter-examples. We also discuss ideas for how such a process could be automated.
Resumo:
Proof critics are a technology from the proof planning paradigm. They examine failed proof attempts in order to extract information which can be used to generate a patch which will allow the proof to go through. We consider the proof of the $quot;whisky problem$quot;, a challenge problem from the domain of temporal logic. The proof requires a generalisation of the original conjecture and we examine two proof critics which can be used to create this generalisation. Using these critics we believe we have produced the first automatic proofs of this challenge problem. We use this example to motivate a comparison of the two critics and propose that there is a place for specialist critics as well as powerful general critics. In particular we advocate the development of critics that do not use meta-variables.
Resumo:
We describe an integration of the SVC decision procedure with the HOL theorem prover. This integration was achieved using the PROSPER toolkit. The SVC decision procedure operates on rational numbers, an axiomatic theory for which was provided in HOL. The decision procedure also returns counterexamples and a framework has been devised for handling counterexamples in a HOL setting.
Resumo:
Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling.