949 resultados para High-frequency trading


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Semiconductor technology scaling has enabled drastic growth in the computational capacity of integrated circuits (ICs). This constant growth drives an increasing demand for high bandwidth communication between ICs. Electrical channel bandwidth has not been able to keep up with this demand, making I/O link design more challenging. Interconnects which employ optical channels have negligible frequency dependent loss and provide a potential solution to this I/O bandwidth problem. Apart from the type of channel, efficient high-speed communication also relies on generation and distribution of multi-phase, high-speed, and high-quality clock signals. In the multi-gigahertz frequency range, conventional clocking techniques have encountered several design challenges in terms of power consumption, skew and jitter. Injection-locking is a promising technique to address these design challenges for gigahertz clocking. However, its small locking range has been a major contributor in preventing its ubiquitous acceptance.

In the first part of this dissertation we describe a wideband injection locking scheme in an LC oscillator. Phase locked loop (PLL) and injection locking elements are combined symbiotically to achieve wide locking range while retaining the simplicity of the latter. This method does not require a phase frequency detector or a loop filter to achieve phase lock. A mathematical analysis of the system is presented and the expression for new locking range is derived. A locking range of 13.4 GHz–17.2 GHz (25%) and an average jitter tracking bandwidth of up to 400 MHz are measured in a high-Q LC oscillator. This architecture is used to generate quadrature phases from a single clock without any frequency division. It also provides high frequency jitter filtering while retaining the low frequency correlated jitter essential for forwarded clock receivers.

To improve the locking range of an injection locked ring oscillator; QLL (Quadrature locked loop) is introduced. The inherent dynamics of injection locked quadrature ring oscillator are used to improve its locking range from 5% (7-7.4GHz) to 90% (4-11GHz). The QLL is used to generate accurate clock phases for a four channel optical receiver using a forwarded clock at quarter-rate. The QLL drives an injection locked oscillator (ILO) at each channel without any repeaters for local quadrature clock generation. Each local ILO has deskew capability for phase alignment. The optical-receiver uses the inherent frequency to voltage conversion provided by the QLL to dynamically body bias its devices. A wide locking range of the QLL helps to achieve a reliable data-rate of 16-32Gb/s and adaptive body biasing aids in maintaining an ultra-low power consumption of 153pJ/bit.

From the optical receiver we move on to discussing a non-linear equalization technique for a vertical-cavity surface-emitting laser (VCSEL) based optical transmitter, to enable low-power, high-speed optical transmission. A non-linear time domain optical model of the VCSEL is built and evaluated for accuracy. The modelling shows that, while conventional FIR-based pre-emphasis works well for LTI electrical channels, it is not optimum for the non-linear optical frequency response of the VCSEL. Based on the simulations of the model an optimum equalization methodology is derived. The equalization technique is used to achieve a data-rate of 20Gb/s with power efficiency of 0.77pJ/bit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials.

However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high mechanical frequency of these systems allows for the possibility of using a dilution refrigerator to simultaneously achieve low thermal occupancy and long mechanical coherence time by passively cooling the device to the millikelvin regime. This thesis describes efforts to realize the measurement of OMC cavities inside a dilution refrigerator, including the development of fridge-compatible optical coupling schemes and the characterization of the heating dynamics of the mechanical resonator at sub-kelvin temperatures.

We will begin by summarizing the theoretical framework used to describe cavity optomechanical systems, as well as a handful of the quantum applications envisioned for such devices. Then, we will present background on the design of the nanobeam OMC cavities used for this work, along with details of the design and characterization of tapered fiber couplers for optical coupling inside the fridge. Finally, we will present measurements of the devices at fridge base temperatures of Tf = 10 mK, using both heterodyne spectroscopy and time-resolved sideband photon counting, as well as detailed analysis of the prospects for future quantum applications based on the observed optically-induced heating.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The temporoammonic (TA) pathway is the direct, monosynaptic projection from layer III of entorhinal cortex to the distal dendritic region of area CA1 of the hippo­ campus. Although this pathway has been implicated in various functions, such as memory encoding and retrieval, spatial navigation, generation of oscillatory activity, and control of hippocampal excitability, the details of its physiology are not well understood. In this thesis, I examine the contribution of the TA pathway to hippocampal processing. I find that, as has been previously reported, the TA pathway includes both excitatory, glutamatergic components and inhibitory, GABAergic components. Several new discoveries are reported in this thesis. I show that the TA pathway is subject to forms of short-term activity-dependent regulation, including paired-pulse and frequency­ dependent plasticity, similar to other hippocampal pathways such as the Schaffer collateral (SC) input from CA3 to CA1. The TA pathway provides a strongly excitatory input to stratum radiatum giant cells of CA1. The excitatory component of the TA pathway undergoes a long-lasting decrease in synaptic strength following low-frequency stimulation in a manner partially dependent on the activation of NMDA receptors. High­ frequency activation of the TA pathway recruits a feedforward inhibition that can prevent CA1 pyramidal cells from spiking in response to SC input; this spike-blocking effect shows that the TA pathway can act to regulate information flow through the hippocampal trisynaptic pathway.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis describes a series of experimental, numerical, and analytical studies involving the Caltech magnetohydrodynamically (MHD)-driven plasma jet experiment. The plasma jet is created via a capacitor discharge that powers a magnetized coaxial planar electrodes system. The jet is collimated and accelerated by the MHD forces.

We present three-dimensional ideal MHD finite-volume simulations of the plasma jet experiment using an astrophysical magnetic tower as the baseline model. A compact magnetic energy/helicity injection is exploited in the simulation analogous to both the experiment and to astrophysical situations. Detailed analysis provides a comprehensive description of the interplay of magnetic force, pressure, and flow effects. We delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms.

When the experimental jet is sufficiently long, it undergoes a global kink instability and then a secondary local Rayleigh-Taylor instability caused by lateral acceleration of the kink instability. We present an MHD theory of the Rayleigh-Taylor instability on the cylindrical surface of a plasma flux rope in the presence of a lateral external gravity. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring at a two-dimensional planar interface.

In the experiment, this instability cascade from macro-scale to micro-scale eventually leads to the failure of MHD. When the Rayleigh-Taylor instability becomes nonlinear, it compresses and pinches the plasma jet to a scale smaller than the ion skin depth and triggers a fast magnetic reconnection. We built a specially designed high-speed 3D magnetic probe and successfully detected the high frequency magnetic fluctuations of broadband whistler waves associated with the fast reconnection. The magnetic fluctuations exhibit power-law spectra. The magnetic components of single-frequency whistler waves are found to be circularly polarized regardless of the angle between the wave propagation direction and the background magnetic field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In four chapters various aspects of earthquake source are studied.

Chapter I

Surface displacements that followed the Parkfield, 1966, earthquakes were measured for two years with six small-scale geodetic networks straddling the fault trace. The logarithmic rate and the periodic nature of the creep displacement recorded on a strain meter made it possible to predict creep episodes on the San Andreas fault. Some individual earthquakes were related directly to surface displacement, while in general, slow creep and aftershock activity were found to occur independently. The Parkfield earthquake is interpreted as a buried dislocation.

Chapter II

The source parameters of earthquakes between magnitude 1 and 6 were studied using field observations, fault plane solutions, and surface wave and S-wave spectral analysis. The seismic moment, MO, was found to be related to local magnitude, ML, by log MO = 1.7 ML + 15.1. The source length vs magnitude relation for the San Andreas system found to be: ML = 1.9 log L - 6.7. The surface wave envelope parameter AR gives the moment according to log MO = log AR300 + 30.1, and the stress drop, τ, was found to be related to the magnitude by τ = 0.54 M - 2.58. The relation between surface wave magnitude MS and ML is proposed to be MS = 1.7 ML - 4.1. It is proposed to estimate the relative stress level (and possibly the strength) of a source-region by the amplitude ratio of high-frequency to low-frequency waves. An apparent stress map for Southern California is presented.

Chapter III

Seismic triggering and seismic shaking are proposed as two closely related mechanisms of strain release which explain observations of the character of the P wave generated by the Alaskan earthquake of 1964, and distant fault slippage observed after the Borrego Mountain, California earthquake of 1968. The Alaska, 1964, earthquake is shown to be adequately described as a series of individual rupture events. The first of these events had a body wave magnitude of 6.6 and is considered to have initiated or triggered the whole sequence. The propagation velocity of the disturbance is estimated to be 3.5 km/sec. On the basis of circumstantial evidence it is proposed that the Borrego Mountain, 1968, earthquake caused release of tectonic strain along three active faults at distances of 45 to 75 km from the epicenter. It is suggested that this mechanism of strain release is best described as "seismic shaking."

Chapter IV

The changes of apparent stress with depth are studied in the South American deep seismic zone. For shallow earthquakes the apparent stress is 20 bars on the average, the same as for earthquakes in the Aleutians and on Oceanic Ridges. At depths between 50 and 150 km the apparent stresses are relatively high, approximately 380 bars, and around 600 km depth they are again near 20 bars. The seismic efficiency is estimated to be 0.1. This suggests that the true stress is obtained by multiplying the apparent stress by ten. The variation of apparent stress with depth is explained in terms of the hypothesis of ocean floor consumption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sufficient stability criteria for classes of parametrically excited differential equations are developed and applied to example problems of a dynamical nature.

Stability requirements are presented in terms of 1) the modulus of the amplitude of the parametric terms, 2) the modulus of the integral of the parametric terms and 3) the modulus of the derivative of the parametric terms.

The methods employed to show stability are Liapunov’s Direct Method and the Gronwall Lemma. The type of stability is generally referred to as asymptotic stability in the sense of Liapunov.

The results indicate that if the equation of the system with the parametric terms set equal to zero exhibits stability and possesses bounded operators, then the system will be stable under sufficiently small modulus of the parametric terms or sufficiently small modulus of the integral of the parametric terms (high frequency). On the other hand, if the equation of the system exhibits individual stability for all values that the parameter assumes in the time interval, then the actual system will be stable under sufficiently small modulus of the derivative of the parametric terms (slowly varying).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pattern of energy release during the Imperial Valley, California, earthquake of 1940 is studied by analysing the El Centro strong motion seismograph record and records from the Tinemaha seismograph station, 546 km from the epicenter. The earthquake was a multiple event sequence with at least 4 events recorded at El Centro in the first 25 seconds, followed by 9 events recorded in the next 5 minutes. Clear P, S and surface waves were observed on the strong motion record. Although the main part of the earthquake energy was released during the first 15 seconds, some of the later events were as large as M = 5.8 and thus are important for earthquake engineering studies. The moment calculated using Fourier analysis of surface waves agrees with the moment estimated from field measurements of fault offset after the earthquake. The earthquake engineering significance of the complex pattern of energy release is discussed. It is concluded that a cumulative increase in amplitudes of building vibration resulting from the present sequence of shocks would be significant only for structures with relatively long natural period of vibration. However, progressive weakening effects may also lead to greater damage for multiple event earthquakes.

The model with surface Love waves propagating through a single layer as a surface wave guide is studied. It is expected that the derived properties for this simple model illustrate well several phenomena associated with strong earthquake ground motion. First, it is shown that a surface layer, or several layers, will cause the main part of the high frequency energy, radiated from the nearby earthquake, to be confined to the layer as a wave guide. The existence of the surface layer will thus increase the rate of the energy transfer into the man-made structures on or near the surface of the layer. Secondly, the surface amplitude of the guided SH waves will decrease if the energy of the wave is essentially confined to the layer and if the wave propagates towards an increasing layer thickness. It is also shown that the constructive interference of SH waves will cause the zeroes and the peaks in the Fourier amplitude spectrum of the surface ground motion to be continuously displaced towards the longer periods as the distance from the source of the energy release increases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microwave response of the superconducting state in equilibrium and non-equilibrium configurations was examined experimentally and analytically. Thin film superconductors were mostly studied in order to explore spatial effects. The response parameter measured was the surface impedance.

For small microwave intensity the surface impedance at 10 GHz was measured for a variety of samples (mostly Sn) over a wide range of sample thickness and temperature. A detailed analysis based on the BCS theory was developed for calculating the surface impedance for general thickness and other experimental parameters. Experiment and theory agreed with each other to within the experimental accuracy. Thus it was established that the samples, thin films as well as bulk, were well characterised at low microwave powers (near equilibrium).

Thin films were perturbed by a small dc supercurrent and the effect on the superconducting order parameter and the quasiparticle response determined by measuring changes in the surface resistance (still at low microwave intensity and independent of it) due to the induced current. The use of fully superconducting resonators enabled the measurement of very small changes in the surface resistance (< 10-9 Ω/sq.). These experiments yield information regarding the dynamics of the order parameter and quasiparticle systems. For all the films studied the results could be described at temperatures near Tc by the thermodynamic depression of the order parameter due to the static current leading to a quadratic increase of the surface resistance with current.

For the thinnest films the low temperature results were surprising in that the surface resistance decreased with increasing current. An explanation is proposed according to which this decrease occurs due to an additional high frequency quasiparticle current caused by the combined presence of both static and high frequency fields. For frequencies larger than the inverse of the quasiparticle relaxation time this additional current is out of phase (by π) with the microwave electric field and is observed as a decrease of surface resistance. Calculations agree quantitatively with experimental results. This is the first observation and explanation of this non-equilibrium quasiparticle effect.

For thicker films of Sn, the low temperature surface resistance was found to increase with applied static current. It is proposed that due to the spatial non-uniformity of the induced current distribution across the thicker films, the above purely temporal analysis of the local quasiparticle response needs to be generalised to include space and time non-equilibrium effects.

The nonlinear interaction of microwaves arid superconducting films was also examined in a third set of experiments. The surface impedance of thin films was measured as a function of the incident microwave magnetic field. The experiments exploit the ability to measure the absorbed microwave power and applied microwave magnetic field absolutely. It was found that the applied surface microwave field could not be raised above a certain threshold level at which the absorption increased abruptly. This critical field level represents a dynamic critical field and was found to be associated with the penetration of the app1ied field into the film at values well below the thermodynamic critical field for the configuration of a field applied to one side of the film. The penetration occurs despite the thermal stability of the film which was unequivocally demonstrated by experiment. A new mechanism for such penetration via the formation of a vortex-antivortex pair is proposed. The experimental results for the thinnest films agreed with the calculated values of this pair generation field. The observations of increased transmission at the critical field level and suppression of the process by a metallic ground plane further support the proposed model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

为满足激光惯性约束聚变中靶面激光辐照不均匀性低于5%的要求, 在目前使用透镜列阵基础上, 提出了谱色散平滑与透镜列阵联用方案, 对其进行数值计算并分析其平滑效果和应用可行性。结果表明:焦斑的不均匀性从单独使用透镜列阵时的14%降低到与谱色散平滑结合后的3%;对焦斑点功率谱的分析表明谱色散平滑通过抑制焦斑中高频的频谱强度达到平滑效果。该方案可以进一步提高焦斑平滑效果, 计算结果对实际应用有着重要的参考意义。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

分析了布里渊分布式光纤传感技术原理,采用自行研制的光纤单纵模分布反馈(DFB)激光器结合电光调制技术,利用相干检测技术,对布里渊微弱后向散射信号进行检测。通过改进滤波放大技术,对微弱后向散射光信号进行有效放大,再用扰偏技术及信号采样平均处理,实现对光纤传感器后向布里渊散射信号在11 GHz高频段直接采集显示。结果表明,探测所得布里渊散射信号峰值功率可达50 mV,能有效降低解调系统信号检测难度,改善了系统信噪比(SNR)。初步实验结果证明了该方案的可行性。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a new method to increase the resolution of an optical system by modifying part of the spatial-frequency spectrum, viz., displacing the lower-frequency light to a high-frequency band, which makes the central maximum in the diffraction pattern narrower and increases the depth of focus. Simulation results show that this kind of apodizer (the term apodization was originally used to describe ways to reduce the sidelobes of the PSF, but in this paper, we use it in a wider sense) is superior to the phase-shifting ones. (C) 2001 Society of Photo-Optical Instrumentation Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effective refractive index of a kind of granular composite, which consists of granular metallic and magnetic inclusions with different radius embedded in a host medium, is theoretically investigated. Results show that for certain volume fractions of these two inclusions, the negative permittivity peak shifts to low frequency and the peak value increases with increasing radius ratio of the radius of magnetic granulae to that of metallic granulae. Simultaneously, peak value of permeability decreases with the radius ratio, and value peak shifts to high frequency with increasing volume fraction of magnetic inclusion. Therefore, the radius ratio can affect the effective refractive index considerably, and it is found that by adjusting the radius ratio, the refractive index may change between negative and positive values for certain volume fractions of the two inclusions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

报道了利用声光振幅调制锁模的方法,在激光二极管端面抽运Nd:YVO4激光器上获得320MHz高重复频率脉冲列的实验结果。实验采用平一平腔结构,腔长452mm,耦合输出镜透过率为3.6%。所用声光介质为熔融石英晶体,以铌酸锂作换能器,在驱动功率4.5W时,对1064nm波长衍射效率为50,相应的调制深度为0.31。在最佳锁模状态下,激光二极管抽运功率为3.5W,此时激光平均输出功率为15mw。示波器记录脉冲宽度680ps,实测光束质量因子M^2小于1.5。并在实验基础上对激光器工作的稳定性进行了分析,结果表

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several insectivorous bats have included fish in their diet, yet little is known about the processes underlying this trophic shift. We performed three field experiments with wild fishing bats to address how they manage to discern fish from insects and adapt their hunting technique to capture fish. We show that bats react only to targets protruding above the water and discern fish from insects based on prey disappearance patterns. Stationary fish trigger short and shallow dips and a terminal echolocation pattern with an important component of the narrowband and low frequency calls. When the fish disappears during the attack process, bats regulate their attack increasing the number of broadband and high frequency calls in the last phase of the echolocation as well as by lengthening and deepening their dips. These adjustments may allow bats to obtain more valuable sensorial information and to perform dips adjusted to the level of uncertainty on the location of the submerged prey. The observed ultrafast regulation may be essential for enabling fishing to become cost-effective in bats, and demonstrates the ability of bats to rapidly modify and synchronise their sensorial and motor features as a response to last minute stimulus variations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN]Hyperventilation, which is common both in-hospital and out-of-hospital cardiac arrest, decreases coronary and cerebral perfusion contributing to poorer survival rates in both animals and humans. Current resucitation guidelines recommend continuous monitoring of exhaled carbon dioxide (CO2) during cardiopulmonary resucitation (CPR) and emphasize good quality of CPR, including ventilations at 8-10 min1. Most of commercial monitors/de- brilators incorporate methods to compute the respiratory rate based on capnography since it shows uctuations caused by ventilations. Chest compressions may induce artifacts in this signal making the calculation of the respiratory rate di cult. Nevertheless, the accuracy of these methods during CPR has not been documented yet. The aim of this project is to analyze whether the capnogram is reliable to compute ventilation rate during CPR. A total of 91 episodes, 63 out-of-hospital cardiac arrest episodes ( rst database) and 28 in-hospital cardiac arrest episodes (second database) were used to develop an algorithm to detect ventilations in the capnogram, and the nal aim is to provide an accurate ventilation rate for feedback purposes during CPR. Two graphic user interfaces were developed to make the analysis easier and another two were adapted to carry out this project. The use of this interfaces facilitates the managment of the databases and the calculation of the algorithm accuracy. In the rst database, as gold standard every ventilation was marked by visual inspection of both the impedance, which shows uctuations with every ventilation, and the capnography signal. In the second database, volume of the respiratory ow signal was used as gold standard to mark ventilation instants since it is not a ected by chest compressions. The capnogram was preprocessed to remove high frequency noise, and the rst di erence was computed to de ne the onset of inspiration and expiration. Then, morphological features were extracted and a decission algorithm built based on the extracted features to detect ventilation instants. Finally, ventilation rate was calculated using the detected instants of ventilation. According to the results obtained in this project, the capnogram can be reliably used to give feedback ventilation rate, and therefore, on hyperventilation in a resucitation scenario.