917 resultados para High regeneration capacity
Resumo:
Standing dead biomass retention is considered one of the most relevant fuel structural traits to affect plant flammability. However, very little is known about the biological significance of this trait and its distribution between different functional groups. Our aim was to analyse how the proportion of dead biomass produced in Mediterranean species is related to the successional niche of species (early-, mid- and late-successional stages) and the regeneration strategy of species (seeders and resprouters). We evaluated biomass distribution by size classes and standing dead biomass retention in nine dominant species from the Mediterranean Basin in different development stages (5, 9, 14 and 26 years since the last fire). The results revealed significant differences in the standing dead biomass retention of species that presented a distinct successional niche or regeneration strategy. These differences were restricted to the oldest ages studied (>9 years). Tree and small tree resprouters, typical in late-successional stages, presented slight variations with age and a less marked trend to retain dead biomass, while seeder shrubs and dwarf shrubs, characteristic of early-successional stages, showed high dead biomass loads. Our results suggest that the species that tend to retain more dead branches are colonising species that may promote fire in early-successional stages.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) Sequence Type (ST)1, Clonal Complex(CC)1, SCCmec V is one of the major Livestock-Associated (LA-) lineages in pig farming industry in Italy and is associated with pigs in other European countries. Recently, it has been increasingly detected in Italian dairy cattle herds. The aim of this study was to analyse the differences between ST1 MRSA and methicillin-susceptible S. aureus (MSSA) from cattle and pig herds in Italy and Europe and human isolates. Sixty-tree animal isolates from different holdings and 20 human isolates were characterized by pulsed-field gel electrophoresis (PFGE), spa-typing, SCCmec typing, and by micro-array analysis for several virulence, antimicrobial resistance, and strain/host-specific marker genes. Three major PFGE clusters were detected. The bovine isolates shared a high (≥90% to 100%) similarity with human isolates and carried the same SCCmec type IVa. They often showed genetic features typical of human adaptation or present in human-associated CC1: Immune evasion cluster (IEC) genes sak and scn, or sea; sat and aphA3-mediated aminoglycoside resistance. Contrary, typical markers of porcine origin in Italy and Spain, like erm(A) mediated macrolide-lincosamide-streptograminB, and of vga(A)-mediated pleuromutilin resistance were always absent in human and bovine isolates. Most of ST(CC)1 MRSA from dairy cattle were multidrug-resistant and contained virulence and immunomodulatory genes associated with full capability of colonizing humans. As such, these strains may represent a greater human hazard than the porcine strains. The zoonotic capacity of CC1 LA-MRSA from livestock must be taken seriously and measures should be implemented at farm-level to prevent spill-over.
Resumo:
The recent development of the concept of microgrid (μGrid), associated to the emergent interest in microgeneration (μGen), has raised a number of challenges regarding the evaluation of the technical, economical and regulatory impacts of a high penetration of this kind of solutions in the power systems. In this paper, the topic of security of supply is addressed, aiming at evaluating the influence of μGen and μGrids in the medium- and long-term availability of generation to serve the forecasted load. A Monte-Carlo based methodology is used to evaluate this influence and to assess the capacity credit of those entities.
Resumo:
The diaphragm is the primary inspiratory pump muscle of breathing. Notwithstanding its critical role in pulmonary ventilation, the diaphragm like other striated muscles is malleable in response to physiological and pathophysiological stressors, with potential implications for the maintenance of respiratory homeostasis. This review considers hypoxic adaptation of the diaphragm muscle, with a focus on functional, structural, and metabolic remodeling relevant to conditions such as high altitude and chronic respiratory disease. On the basis of emerging data in animal models, we posit that hypoxia is a significant driver of respiratory muscle plasticity, with evidence suggestive of both compensatory and deleterious adaptations in conditions of sustained exposure to low oxygen. Cellular strategies driving diaphragm remodeling during exposure to sustained hypoxia appear to confer hypoxic tolerance at the expense of peak force-generating capacity, a key functional parameter that correlates with patient morbidity and mortality. Changes include, but are not limited to: redox-dependent activation of hypoxia-inducible factor (HIF) and MAP kinases; time-dependent carbonylation of key metabolic and functional proteins; decreased mitochondrial respiration; activation of atrophic signaling and increased proteolysis; and altered functional performance. Diaphragm muscle weakness may be a signature effect of sustained hypoxic exposure. We discuss the putative role of reactive oxygen species as mediators of both advantageous and disadvantageous adaptations of diaphragm muscle to sustained hypoxia, and the role of antioxidants in mitigating adverse effects of chronic hypoxic stress on respiratory muscle function.
Resumo:
Background and aims: Advances in modern medicine have led to improved outcomes after stroke, yet an increased treatment burden has been placed on patients. Treatment burden is the workload of health care for people with chronic illness and the impact that this has on functioning and well-being. Those with comorbidities are likely to be particularly burdened. Excessive treatment burden can negatively affect outcomes. Individuals are likely to differ in their ability to manage health problems and follow treatments, defined as patient capacity. The aim of this thesis was to explore the experience of treatment burden for people who have had a stroke and the factors that influence patient capacity. Methods: There were four phases of research. 1) A systematic review of the qualitative literature that explored the experience of treatment burden for those with stroke. Data were analysed using framework synthesis, underpinned by Normalisation Process Theory (NPT). 2) A cross-sectional study of 1,424,378 participants >18 years, demographically representative of the Scottish population. Binary logistic regression was used to analyse the relationship between stroke and the presence of comorbidities and prescribed medications. 3) Interviews with twenty-nine individuals with stroke, fifteen analysed by framework analysis underpinned by NPT and fourteen by thematic analysis. The experience of treatment burden was explored in depth along with factors that influence patient capacity. 4) Integration of findings in order to create a conceptual model of treatment burden and patient capacity in stroke. Results: Phase 1) A taxonomy of treatment burden in stroke was created. The following broad areas of treatment burden were identified: making sense of stroke management and planning care; interacting with others including health professionals, family and other stroke patients; enacting management strategies; and reflecting on management. Phase 2) 35,690 people (2.5%) had a diagnosis of stroke and of the 39 co-morbidities examined, 35 were significantly more common in those with stroke. The proportion of those with stroke that had >1 additional morbidities present (94.2%) was almost twice that of controls (48%) (odds ratio (OR) adjusted for age, gender and socioeconomic deprivation; 95% confidence interval: 5.18; 4.95-5.43) and 34.5% had 4-6 comorbidities compared to 7.2% of controls (8.59; 8.17-9.04). In the stroke group, 12.6% of people had a record of >11 repeat prescriptions compared to only 1.5% of the control group (OR adjusted for age, gender, deprivation and morbidity count: 15.84; 14.86-16.88). Phase 3) The taxonomy of treatment burden from Phase 1 was verified and expanded. Additionally, treatment burdens were identified as arising from either: the workload of healthcare; or the endurance of care deficiencies. A taxonomy of patient capacity was created. Six factors were identified that influence patient capacity: personal attributes and skills; physical and cognitive abilities; support network; financial status; life workload, and environment. A conceptual model of treatment burden was created. Healthcare workload and the presence of care deficiencies can influence and be influenced by patient capacity. The quality and configuration of health and social care services influences healthcare workload, care deficiencies and patient capacity. Conclusions: This thesis provides important insights into the considerable treatment burden experienced by people who have had a stroke and the factors that affect their capacity to manage health. Multimorbidity and polypharmacy are common in those with stroke and levels of these are high. Findings have important implications for the design of clinical guidelines and healthcare delivery, for example co-ordination of care should be improved, shared decision-making enhanced, and patients better supported following discharge from hospital.
Resumo:
For the activated carbon (AC) production, we used the most common industrial and consumer solid waste, namely polyethyleneterephthalate (PET), alone or blended with other synthetic polymer such polyacrylonitrile (PAN). By mixing PET, with PAN, an improvement in the yield of the AC production was found and the basic character and some textural and chemical properties were enhanced. The PET–PAN mixture was subjected to carbonisation, with a pyrolysis yield of 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. The AC revealed a high surface area (1400, 1230 and 1117 m2 g−1) and pore volume (0.46, 0.56 and 0.50 cm3 g−1), respectively, for PET, PAN and PET–PAN precursors. Selected ACs were successfully tested for 4- chloro-2-methylphenoxyacetic acid (MCPA) and diuron removal from the liquid phase, showing a higher adsorption capacity (1.7 and 1.2 mmol g−1, respectively, for MCPA and diuron) and good fits with the Langmuir (PET) and Freundlich equation (PAN and PET–PAN blend). With MCPA, the controlling factor to the adsorption capacity was the porous volume and the average pore size. Concerning diuron, the adsorption was controlled essentially by the external diffusion. A remarkable result is the use of different synthetic polymers wastes, as precursors for the production of carbon materials, with high potential application on the pesticides removals from the liquid phase.
Resumo:
Despite the large applicability of the field capacity (FC) concept in hydrology and engineering, it presents various ambiguities and inconsistencies due to a lack of methodological procedure standardization. Experimental field and laboratory protocols taken from the literature were used in this study to determine the value of FC for different depths in 29 soil profiles, totaling 209 soil samples. The volumetric water content (θ) values were also determined at three suction values (6 kPa, 10 kPa, 33 kPa), along with bulk density (BD), texture (T) and organic matter content (OM). The protocols were devised based on the water processes involved in the FC concept aiming at minimizing hydraulic inconsistencies and procedural difficulty while maintaining the practical meaning of the concept. A high correlation between FC and θ(6 kPa) allowed the development of a pedotransfer function (Equation 3) quadratic for θ(6 kPa), resulting in an accurate and nearly bias-free calculation of FC for the four database geographic areas, with a global root mean squared residue (RMSR) of 0.026 m3·m-3. At the individual soil profile scale, the maximum RMSR was only 0.040 m3·m-3. The BD, T and OM data were generally of a low predicting quality regarding FC when not accompanied by the moisture variables. As all the FC values were obtained by the same experimental protocol and as the predicting quality of Equation 3 was clearly better than that of the classical method, which considers FC equal to θ(6), θ(10) or θ(33), we recommend using Equation 3 rather than the classical method, as well as the protocol presented here, to determine in-situ FC.
Resumo:
The purpose of this article is to present the results obtained from a questionnaire applied to Costa Rican high school students, in order to know their perspectives about geometry teaching and learning. The results show that geometry classes in high school education have been based on a traditional system of teaching, where the teacher presents the theory; he presents examples and exercises that should be solved by students, which emphasize in the application and memorization of formulas. As a consequence, visualization processes, argumentation and justification don’t have a preponderant role. Geometry is presented to students like a group of definitions, formulas, and theorems completely far from their reality and, where the examples and exercises don’t possess any relationship with their context. As a result, it is considered not important, because it is not applicable to real life situations. Also, the students consider that, to be successful in geometry, it is necessary to know how to use the calculator, to carry out calculations, to have capacity to memorize definitions, formulas and theorems, to possess capacity to understand the geometric drawings and to carry out clever exercises to develop a practical ability.
Resumo:
In the field of bone substitutes is highly researched an innovative material able to fill gaps with high mechanical performances and able to stimulate cell response, permitting the complete restoration of the bone portion. In this respect, the synthesis of new bioactive materials able to mimic the compositional, morphological and mechanical features of bone is considered as the elective approach for effective tissue regeneration. Hydroxyapatite (HA) is the main component of the inorganic part of bone. Additionally ionic substitution can be performed in the apatite lattice producing different effects, depending from the selected ions. Magnesium, in substitution of calcium, and carbonate, in substitution of phosphate, extensively present in the biological bones, are able to improve properties naturally present in the apatitic phase, (i.e. biomimicry, solubility e osteoinductive properties). Other ions can be used to give new useful properties, like antiresorptive or antimicrobial properties, to the apatitic phase. This thesis focused on the development of hydroxyapatite nanophases with multiple ionic substitutions including gallium, or zinc ions, in association with magnesium and carbonate, with the purpose to provide double synergistic functionality as osteogenic and antibacterial biomaterial. Were developed bioactive materials based on Sr-substituted hydroxyapatite in the form of sintered targets. The obtained targets were treated with Pulsed Plasma Deposition (PED) resulting in the deposition of thin film coatings able to improve the roughness and wettability of PEEK, enhancing its osteointegrability. Were investigated heterogeneous gas-solid reactions, addressed to the biomorphic transformations of natural 3D porous structures into bone scaffolds with biomimetic composition and hierarchical organization, for application in load-bearing sites. The kinetics of the different reactions of the process were optimized to achieve complete and controlled phase transformation, maintaining the original 3-D morphology. Massive porous scaffolds made of ion-substituted hydroxyapatite and bone-mimicking structure were developed and tested in 3-D cell culture models.
Resumo:
High Energy efficiency and high performance are the key regiments for Internet of Things (IoT) end-nodes. Exploiting cluster of multiple programmable processors has recently emerged as a suitable solution to address this challenge. However, one of the main bottlenecks for multi-core architectures is the instruction cache. While private caches fall into data replication and wasting area, fully shared caches lack scalability and form a bottleneck for the operating frequency. Hence we propose a hybrid solution where a larger shared cache (L1.5) is shared by multiple cores connected through a low-latency interconnect to small private caches (L1). However, it is still limited by large capacity miss with a small L1. Thus, we propose a sequential prefetch from L1 to L1.5 to improve the performance with little area overhead. Moreover, to cut the critical path for better timing, we optimized the core instruction fetch stage with non-blocking transfer by adopting a 4 x 32-bit ring buffer FIFO and adding a pipeline for the conditional branch. We present a detailed comparison of different instruction cache architectures' performance and energy efficiency recently proposed for Parallel Ultra-Low-Power clusters. On average, when executing a set of real-life IoT applications, our two-level cache improves the performance by up to 20% and loses 7% energy efficiency with respect to the private cache. Compared to a shared cache system, it improves performance by up to 17% and keeps the same energy efficiency. In the end, up to 20% timing (maximum frequency) improvement and software control enable the two-level instruction cache with prefetch adapt to various battery-powered usage cases to balance high performance and energy efficiency.
Resumo:
In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.
Resumo:
Films of silk fibroin (SF) and sodium alginate (SA) blends were prepared by solution casting technique. The miscibility of SF and SA in those blends was evaluated and scanning electron microscopy (SEM) revealed that SF/SA 25/75 wt.% blends underwent microscopic phase separation, resulting in globular structures composed mainly of SF. X-ray diffraction indicated the amorphous nature of these blends, even after a treatment with ethanol that turned them insoluble in water. Thermal analyses of blends showed the peaks of degradation of pristine SF and SA shifted to intermediate temperatures. Water vapor permeability, swelling capacity and tensile strength of SF films could be enhanced by blending with SA. Cell viability remained between 90 and 100%, as indicated by in vitro cytotoxicity test. The SF/SA blend with self-assembled SF globules can be used to modulate structural and mechanical properties of the final material and may be used in designing high performance wound dressing.
Resumo:
Neglected agricultural products (NAPs) are defined as discarded material in agricultural production. Corn cobs are a major waste of agriculture maize. Here, a methanolic extract from corn cobs (MEC) was obtained. MEC contains phenolic compounds, protein, carbohydrates (1.4:0.001:0.001). We evaluated the in vitro and in vivo antioxidant potential of MEC. Furthermore, its antiproliferative property against tumor cells was assessed through MTT assays and proteins related to apoptosis in tumor cells were examined by western blot. MEC showed no hydroxyl radical scavenger capacity, but it showed antioxidant activity in Total Antioxidant Capacity and DPPH scavenger ability assays. MEC showed higher Reducing Power than ascorbic acid and exhibited high Superoxide Scavenging activity. In tumor cell culture, MEC increased catalase, metallothionein and superoxide dismutase expression in accordance with the antioxidant tests. In vivo antioxidant test, MEC restored SOD and CAT, decreased malondialdehyde activities and showed high Trolox Equivalent Antioxidant Capacity in animals treated with CCl4. Furthermore, MEC decreased HeLa cells viability by apoptosis due an increase of Bax/Bcl-2 ratio, caspase 3 active. Protein kinase C expression increased was also detected in treated tumor cells. Thus, our findings pointed out the biotechnological potential of corn cobs as a source of molecules with pharmacological activity.
Resumo:
The purpose of this study was to assess the efficacy and reproducibility of the cytologic diagnosis of salivary gland tumors (SGTs) using fine-needle aspiration cytology (FNAC). The study aimed to determine diagnostic accuracy, sensitivity, and specificity and to evaluate the extent of interobserver agreement. We retrospectively evaluated SGTs from the files of the Division of Pathology at the Clinics Hospital of São Paulo and Piracicaba Dental School between 2000 and 2006. We performed cytohistologic correlation in 182 SGTs. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were 94%, 100%, 100%, 100%, and 99%, respectively. The interobserver cytologic reproducibility showed significant statistical concordance (P < .0001). FNAC is an effective tool for performing a reliable preoperative diagnosis in SGTs and shows high diagnostic accuracy and consistent interobserver reproducibility. Further FNAC studies analyzing large samples of malignant SGTs and reactive salivary lesions are needed to confirm their accuracy.
Resumo:
Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.