945 resultados para Heuristic Method of Decomposition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effectiveness of an optimization algorithm can be reduced to its ability to navigate an objective function’s topology. Hybrid optimization algorithms combine various optimization algorithms using a single meta-heuristic so that the hybrid algorithm is more robust, computationally efficient, and/or accurate than the individual algorithms it is made of. This thesis proposes a novel meta-heuristic that uses search vectors to select the constituent algorithm that is appropriate for a given objective function. The hybrid is shown to perform competitively against several existing hybrid and non-hybrid optimization algorithms over a set of three hundred test cases. This thesis also proposes a general framework for evaluating the effectiveness of hybrid optimization algorithms. Finally, this thesis presents an improved Method of Characteristics Code with novel boundary conditions, which better characterizes pipelines than previous codes. This code is coupled with the hybrid optimization algorithm in order to optimize the operation of real-world piston pumps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The drag on a nacelle model was investigated experimentally and computationally to provide guidance and insight into the capabilities of RANS-based CFD. The research goal was to determine whether industry constrained CFD could participate in the aerodynamic design of nacelle bodies. Grid refinement level, turbulence model and near wall treatment settings, to predict drag to the highest accuracy, were key deliverables. Cold flow low-speed wind tunnel experiments were conducted at a Reynolds number of 6∙〖10〗^5, 293 K and a Mach number of 0.1. Total drag force was measured by a six-component force balance. Detailed wake analysis, using a seven-hole pressure probe traverse, allowed for drag decomposition via the far-field method. Drag decomposition was performed through a range of angles of attack between 0o and 45o. Both methods agreed on total drag within their respective uncertainties. Reversed flow at the measurement plane and saturation of the load cell caused discrepancies at high angles of attack. A parallel CFD study was conducted using commercial software, ICEM 15.0 and FLUENT 15.0. Simulating a similar nacelle geometry operating under inlet boundary conditions obtained through wind tunnel characterization allowed for direct comparisons with experiment. It was determined that the Realizable k-ϵ was best suited for drag prediction of this geometry. This model predicted the axial momentum loss and secondary flow in the wake, as well as the integrated surface forces, within experimental error up to 20o angle of attack. SST k-ω required additional surface grid resolution on the nacelle suction side, resulting in 15% more elements, due to separation point prediction sensitivity. It was further recommended to apply enhanced wall treatment to more accurately capture the viscous drag and separated flow structures. Overall, total drag was predicted within 5% at 0o angle of attack and 10% at 20o, each within experimental uncertainty. What is more, the form and induced drag predicted by CFD and measured by the wake traverse shared good agreement. Which indicated CFD captured the key flow features accurately despite simplification of the nacelle interior geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Highway bridges have great values in a country because in case of any natural disaster they may serve as lines to save people’s lives. Being vulnerable under significant seismic loads, different methods can be considered to design resistant highway bridges and rehabilitate the existing ones. In this study, base isolation has been considered as one efficient method in this regards which in some cases reduces significantly the seismic load effects on the structure. By reducing the ductility demand on the structure without a notable increase of strength, the structure is designed to remain elastic under seismic loads. The problem associated with the isolated bridges, especially with elastomeric bearings, can be their excessive displacements under service and seismic loads. This can defy the purpose of using elastomeric bearings for small to medium span typical bridges where expansion joints and clearances may result in significant increase of initial and maintenance cost. Thus, supplementing the structure with dampers with some stiffness can serve as a solution which in turn, however, may increase the structure base shear. The main objective of this thesis is to provide a simplified method for the evaluation of optimal parameters for dampers in isolated bridges. Firstly, performing a parametric study, some directions are given for the use of simple isolation devices such as elastomeric bearings to rehabilitate existing bridges with high importance. Parameters like geometry of the bridge, code provisions and the type of soil on which the structure is constructed have been introduced to a typical two span bridge. It is concluded that the stiffness of the substructure, soil type and special provisions in the code can determine the employment of base isolation for retrofitting of bridges. Secondly, based on the elastic response coefficient of isolated bridges, a simplified design method of dampers for seismically isolated regular highway bridges has been presented in this study. By setting objectives for reduction of displacement and base shear variation, the required stiffness and damping of a hysteretic damper can be determined. By modelling a typical two span bridge, numerical analyses have followed to verify the effectiveness of the method. The method has been used to identify equivalent linear parameters and subsequently, nonlinear parameters of hysteretic damper for various designated scenarios of displacement and base shear requirements. Comparison of the results of the nonlinear numerical model without damper and with damper has shown that the method is sufficiently accurate. Finally, an innovative and simple hysteretic steel damper was designed. Five specimens were fabricated from two steel grades and were tested accompanying a real scale elastomeric isolator in the structural laboratory of the Université de Sherbrooke. The test procedure was to characterize the specimens by cyclic displacement controlled tests and subsequently to test them by real-time dynamic substructuring (RTDS) method. The test results were then used to establish a numerical model of the system which went through nonlinear time history analyses under several earthquakes. The outcome of the experimental and numerical showed an acceptable conformity with the simplified method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contemporary integrated circuits are designed and manufactured in a globalized environment leading to concerns of piracy, overproduction and counterfeiting. One class of techniques to combat these threats is circuit obfuscation which seeks to modify the gate-level (or structural) description of a circuit without affecting its functionality in order to increase the complexity and cost of reverse engineering. Most of the existing circuit obfuscation methods are based on the insertion of additional logic (called “key gates”) or camouflaging existing gates in order to make it difficult for a malicious user to get the complete layout information without extensive computations to determine key-gate values. However, when the netlist or the circuit layout, although camouflaged, is available to the attacker, he/she can use advanced logic analysis and circuit simulation tools and Boolean SAT solvers to reveal the unknown gate-level information without exhaustively trying all the input vectors, thus bringing down the complexity of reverse engineering. To counter this problem, some ‘provably secure’ logic encryption algorithms that emphasize methodical selection of camouflaged gates have been proposed previously in literature [1,2,3]. The contribution of this paper is the creation and simulation of a new layout obfuscation method that uses don't care conditions. We also present proof-of-concept of a new functional or logic obfuscation technique that not only conceals, but modifies the circuit functionality in addition to the gate-level description, and can be implemented automatically during the design process. Our layout obfuscation technique utilizes don’t care conditions (namely, Observability and Satisfiability Don’t Cares) inherent in the circuit to camouflage selected gates and modify sub-circuit functionality while meeting the overall circuit specification. Here, camouflaging or obfuscating a gate means replacing the candidate gate by a 4X1 Multiplexer which can be configured to perform all possible 2-input/ 1-output functions as proposed by Bao et al. [4]. It is important to emphasize that our approach not only obfuscates but alters sub-circuit level functionality in an attempt to make IP piracy difficult. The choice of gates to obfuscate determines the effort required to reverse engineer or brute force the design. As such, we propose a method of camouflaged gate selection based on the intersection of output logic cones. By choosing these candidate gates methodically, the complexity of reverse engineering can be made exponential, thus making it computationally very expensive to determine the true circuit functionality. We propose several heuristic algorithms to maximize the RE complexity based on don’t care based obfuscation and methodical gate selection. Thus, the goal of protecting the design IP from malicious end-users is achieved. It also makes it significantly harder for rogue elements in the supply chain to use, copy or replicate the same design with a different logic. We analyze the reverse engineering complexity by applying our obfuscation algorithm on ISCAS-85 benchmarks. Our experimental results indicate that significant reverse engineering complexity can be achieved at minimal design overhead (average area overhead for the proposed layout obfuscation methods is 5.51% and average delay overhead is about 7.732%). We discuss the strengths and limitations of our approach and suggest directions that may lead to improved logic encryption algorithms in the future. References: [1] R. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based SoC Design Methodology for Hardware Protection,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009. [2] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of Integrated Circuits,” in 2008 Design, Automation and Test in Europe, 2008, pp. 1069–1074. [3] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis of Integrated Circuit Camouflaging,” ACM Conference on Computer Communications and Security, 2013. [4] Bao Liu, Wang, B., "Embedded reconfigurable logic for ASIC design obfuscation against supply chain attacks,"Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014 , vol., no., pp.1,6, 24-28 March 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies Knowledge Discovery (KD) using Tabu Search and Hill Climbing within Case-Based Reasoning (CBR) as a hyper-heuristic method for course timetabling problems. The aim of the hyper-heuristic is to choose the best heuristic(s) for given timetabling problems according to the knowledge stored in the case base. KD in CBR is a 2-stage iterative process on both case representation and the case base. Experimental results are analysed and related research issues for future work are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new hyper-heuristic method using Case-Based Reasoning (CBR) for solving course timetabling problems. The term Hyper-heuristics has recently been employed to refer to 'heuristics that choose heuristics' rather than heuristics that operate directly on given problems. One of the overriding motivations of hyper-heuristic methods is the attempt to develop techniques that can operate with greater generality than is currently possible. The basic idea behind this is that we maintain a case base of information about the most successful heuristics for a range of previous timetabling problems to predict the best heuristic for the new problem in hand using the previous knowledge. Knowledge discovery techniques are used to carry out the training on the CBR system to improve the system performance on the prediction. Initial results presented in this paper are good and we conclude by discussing the con-siderable promise for future work in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called "priming effect" might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal decomposition of a solid recovered fuel has been studied using thermogravimetry, in order to get information about the main steps in the decomposition of such material. The study comprises two different atmospheres: inert and oxidative. The kinetics of decomposition is determined at three different heating rates using the same kinetic constants and model for both atmospheres at all the heating rates simultaneously. A good correlation of the TG data is obtained using three nth-order parallel reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soils are the largest sinks of carbon in terrestrial ecosystems. Soil organic carbon is important for ecosystem balance as it supplies plants with nutrients, maintains soil structure, and helps control the exchange of CO2 with the atmosphere. The processes in which wood carbon is stabilized and destabilized in forest soils is still not understood completely. This study attempts to measure early wood decomposition by different fungal communities (inoculation with pure colonies of brown or white rot, or the original microbial community) under various interacting treatments: wood quality (wood from +CO2, +CO2+O3, or ambient atmosphere Aspen-FACE treatments from Rhinelander, WI), temperature (ambient or warmed), soil texture (loamy or sandy textured soil), and wood location (plot surface or buried 15cm below surface). Control plots with no wood chips added were also monitored throughout the study. By using isotopically-labelled wood chips from the Aspen-FACE experiment, we are able to track wood-derived carbon losses as soil CO2 efflux and as leached dissolved organic carbon (DOC). We analyzed soil water for chemical characteristics such as, total phenolics, SUVA254, humification, and molecular size. Wood chip samples were also analyzed for their proportion of lignin:carbohydrates using FTIR analysis at three time intervals throughout 12 months of decomposition. After two years of measurements, the average total soil CO2 efflux rates were significantly different depending on wood location, temperature, and wood quality. The wood-derived portion soil CO2 efflux also varied significantly by wood location, temperature, and wood quality. The average total DOC and the wood-derived portion of DOC differed between inoculation treatments, wood location, and temperature. Soil water chemical characteristics varied significantly by inoculation treatments, temperature, and wood quality. After 12 months of decomposition the proportion of lignin:carbohydrates varied significantly by inoculation treatment, with white rot having the only average proportional decrease in lignin:carbohydrates. Both soil CO2 efflux and DOC losses indicate that wood location is important. Carbon losses were greater from surface wood chips compared with buried wood chips, implying the importance of buried wood for total ecosystem carbon stabilization. Treatments associated with climate change also had an effect on the level of decomposition. DOC losses, soil water characteristics, and FTIR data demonstrate the importance of fungal community on the degree of decomposition and the resulting byproducts found throughout the soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mango (Mangifera indica L.) trees stand out among the main fruit trees cultivated in Brazil. The mango rosa fruit is a very popular local variety (landrace), especially because of their superior technological characteristics such as high contents of Vitamin C and soluble solids (SS), as well as attractive taste and color. The objective of this study was to select a breeding population of mango rosa (polyclonal variety; ≥5 individuals) that can simultaneously meet the fresh and processed fruit Vmarkets, using the multivariate method of principal components and the biplot graphic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The limb amputation is one of the oldest surgical procedures performed and it still represents an event that drastically changes the life of an individual. Despite the technological progress, the difficulties related to the realization and daily use of the socket remain very common. Among the different technologies adopted in the prosthetic field, this project focused on the osseointegration technique. This technique consists in implanting a stem within the medullary canal of the amputated skeletal segment that extends outside the amputation stump with a prosthesis, later connected to the metal extension. The objective of this PhD project is to treat and to evaluate selected patients with osseointegrated prosthetic implants for the treatment of lower limb amputations. Patients are recruited at the Rizzoli Orthopaedic Institute and at the Prosthesis - INAIL center of Vigorso (Budrio) during outpatient visits, while the surgical procedure is performed by the same expert surgeon in the II Orthopaedic and Traumatology Clinic of the Rizzoli Orthopaedic Institute. The project is still ongoing, to date three patients had completed both procedures, but due to various personal problems, just one of them is included in the analysis. This patient increased his percentage of prosthesis use and the level of mobility with an overall improvement of quality of live after the procedure. The osseointegration technique represents a promising alternative method of treatment for amputees who are not satisfied with their socket prosthesis. In the coming years it will continue the collection of clinical, radiographic and kinematic data of subjects undergoing this procedure in order to perform a long-term monitoring of both clinical outcomes and quality of life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defects of the peripheral nervous system are extremely frequent in trauma and surgeries and have high socioeconomic costs. In case of peripheral nerve injury, the first approach is primary neurorrhaphy, which is direct nerve repair with epineural microsutures of the two stumps. However, this is not feasible in case of stump retraction or in case of tissue loss (gap > 2 cm), where the main surgical options are autologous grafts, allogenic grafts, or nerve conduits. While the gold standard is the autograft, it has disadvantages related to its harvesting, with an inevitable donor site morbidity and functional deficit. Fresh nerve allografts have therefore become a viable alternative option, but they require immunosuppression, which is often contraindicated. Acellular Nerve Allografts (ANA) represent a valid alternative, they do not need immunosuppression and appear to be safe and effective based on recent studies. The purpose of this study is to propose and develop an innovative method of nerve decellularization (Rizzoli method), conforming to cleanroom requirements in order to perform the direct tissue manipulation step and the nerve decellularization process within five hours, so as to accelerate the detachment of myelin and cellular debris, without detrimental effects on nerve architecture. In this study, the safety and the efficacy of the new method are evaluated in vitro and in vivo by histological, immunohistochemical, and histomorphometric studies in rabbits and humans. The new method is rapid, safe, and cheaper if compared with available commercial ANAs. The present study shows that the method, previously optimized in vitro and in vivo on animal model presented by our group, can be applied on human nerve samples. This work represents the first step in providing a novel, safe, and inexpensive tool for use by European tissue banks to democratize the use of nerve tissue transplantation for nerve injury reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to develop a methodology using Raman hyperspectral imaging and chemometric methods for identification of pre- and post-blast explosive residues on banknote surfaces. The explosives studied were of military, commercial and propellant uses. After the acquisition of the hyperspectral imaging, independent component analysis (ICA) was applied to extract the pure spectra and the distribution of the corresponding image constituents. The performance of the methodology was evaluated by the explained variance and the lack of fit of the models, by comparing the ICA recovered spectra with the reference spectra using correlation coefficients and by the presence of rotational ambiguity in the ICA solutions. The methodology was applied to forensic samples to solve an automated teller machine explosion case. Independent component analysis proved to be a suitable method of resolving curves, achieving equivalent performance with the multivariate curve resolution with alternating least squares (MCR-ALS) method. At low concentrations, MCR-ALS presents some limitations, as it did not provide the correct solution. The detection limit of the methodology presented in this study was 50μgcm(-2).