970 resultados para Heterometrus xanthopus venom


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acylpolyamines are low molecular mass toxins occurring exclusively in the venoms from solitary wasps and some groups of spiders. Their chemical structures have been elucidated using hyphenated techniques of mass spectrometry, such as LC-MS and MS/MS, or through direct analysis with different types of NMR analyses. The chemical structures of the acylpolyamine toxins from the venoms of Nephilinae orb-web spiders appear to be organized into four parts based on the combinatorial way that the chemical building blocks are bound to each other. An aromatic moiety (part I) is connected through a linker amino acid (part II) to a polyamine chain (part III), which in turn may be connected to an optional tail (part IV). The polyamine chains were classified into seven subtypes according to the different combinations of chemical building blocks. These polyamine chains, in turn, are connected to one of three chromophore moieties: a 2,4-dihydroxyphenyl acetyl group, a 4-hydroxyindolyl acetyl group, or an indolyl acetyl group. They may be connected through an asparagine residue or sometimes through the dipeptide ornithyl asparagine. Also, nine different types of backbone tails may be attached to the polyamine chains. These toxins are noncompetitive blockers of ionotropic glutamate receptors with neuroprotective action against the neuronal death and antiepileptic effect. Thus, compounds of this class of spider venom toxin seem to represent interesting molecular models for the development of novel neuropharmaceutical drugs. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalytically inactive phospholipase A2 (PLA2) homologues play key roles in the pathogenesis induced by snake envenomation, causing extensive tissue damage via a mechanism still unknown. Although, the amino acid residues directly involved in catalysis are conserved, the substitution of Asp49 by Arg/Lys/Gln or Ser prevents the binding of the essential calcium ion and hence these proteins are incapable of hydrolyzing phospholipids. In this work, the crystal structure of a Lys49-PLA2 homologue from Bothrops brazili (MTX-II) was solved in two conformational states: (a) native, with Lys49 singly coordinated by the backbone oxygen atom of Val31 and (b) complexed with tetraethylene glycol (TTEG). Interestingly, the TTEG molecule was observed in two different coordination cages depending on the orientation of the nominal calcium-binding loop and of the residue Lys49. These structural observations indicate a direct role for the residue Lys49 in the functioning of a catalytically inactive PLA2 homologue suggesting a contribution of the active site-like region in the expression of pharmacological effects such as myotoxicity and edema formation. Despite the several crystal structures of Lys49-PLA2 homologues already determined, their biological assembly remains controversial with two possible conformations. The extended dimer with the hydrophobic channel exposed to the solvent and the compact dimer in which the active site-like region is occluded by the dimeric interface. In the MTX-II crystal packing analysis was found only the extended dimer as a possible stable quaternary arrangement. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the biological activity profile of the snake venom components is fundamental for improving the treatment of snakebite envenomings and may also contribute for the development of new potential therapeutic agents. In this work, we tested the effects of BthTX-I, a Lys49 PLA2 homologue from the Bothrops jararacussu snake venom. While this toxin induces conspicuous myonecrosis by a catalytically independent mechanism, a series of in vitro studies support the hypothesis that BthTX-I might also exert a neuromuscular blocking activity due to its ability to alter the integrity of muscle cell membranes. To gain insight into the mechanisms of this inhibitory neuromuscular effect, for the first time, the influence of BthTX-I on nerve-evoked ACh release was directly quantified by radiochemical and real-time video-microscopy methods. Our results show that the neuromuscular blockade produced by in vitro exposure to BthTX-I (1 μM) results from the summation of both pre- and postsynaptic effects. Modifications affecting the presynaptic apparatus were revealed by the significant reduction of nerve-evoked [3H]-ACh release; real-time measurements of transmitter exocytosis using the FM4-64 fluorescent dye fully supported radiochemical data. The postsynaptic effect of BthTX-I was characterized by typical histological alterations in the architecture of skeletal muscle fibers, increase in the outflow of the intracellular lactate dehydrogenase enzyme and progressive depolarization of the muscle resting membrane potential. In conclusion, these findings suggest that the neuromuscular blockade produced by BthTX-I results from transient depolarization of skeletal muscle fibers, consequent to its general membrane-destabilizing effect, and subsequent decrease of evoked ACh release from motor nerve terminals. © 2012 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mortality caused by snakebites is more damaging than many tropical diseases, such as dengue haemorrhagic fever, cholera, leishmaniasis, schistosomiasis and Chagas disease. For this reason, snakebite envenoming adversely affects health services of tropical and subtropical countries and is recognized as a neglected disease by the World Health Organization. One of the main components of snake venoms is the Lys49-phospholipases A2, which is catalytically inactive but possesses other toxic and pharmacological activities. Preliminary studies with MjTX-I from Bothrops moojeni snake venom revealed intriguing new structural and functional characteristics compared to other bothropic Lys49-PLA2s. We present in this article a comprehensive study with MjTX-I using several techniques, including crystallography, small angle X-ray scattering, analytical size-exclusion chromatography, dynamic light scattering, myographic studies, bioinformatics and molecular phylogenetic analyses.Based in all these experiments we demonstrated that MjTX-I is probably a unique Lys49-PLA2, which may adopt different oligomeric forms depending on the physical-chemical environment. Furthermore, we showed that its myotoxic activity is dramatically low compared to other Lys49-PLA2s, probably due to the novel oligomeric conformations and important mutations in the C-terminal region of the protein. The phylogenetic analysis also showed that this toxin is clearly distinct from other bothropic Lys49-PLA2s, in conformity with the peculiar oligomeric characteristics of MjTX-I and possible emergence of new functionalities inresponse to environmental changes and adaptation to new preys. © 2013 Salvador et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer pain is an important clinical problem and may not respond satisfactorily to the current analgesic therapy. We have characterized a novel and potent analgesic peptide, crotalphine, from the venom of the South American rattlesnake Crotalus durissus terrificus. In the present work, the antinociceptive effect of crotalphine was evaluated in a rat model of cancer pain induced by intraplantar injection of Walker 256 carcinoma cells. Intraplantar injection of tumor cells caused the development of hyperalgesia and allodynia, detected on day 5 after tumor cell inoculation. Crotalphine (6 μg/kg), administered p.o., blocked both phenomena. The antinociceptive effect was detected 1 h after treatment and lasted for up to 48 h. Intraplantar injection of nor-binaltorphimine (50 g/paw), a selective antagonist of κ-opioid receptors, antagonized the antinociceptive effect of the peptide, whereas N,N-diallyl-Tyr-Aib-Phe-Leu (ICI 174,864, 10 μg/paw), a selective antagonist of δ-opioid receptors, partially reversed this effect. On the other hand, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP, 20 g/paw), an antagonist of μ-opioid receptors, did not modify crotalphine-induced antinociception. These data indicate that crotalphine induces a potent and long lasting opioid-mediated antinociception in cancer pain. © 2013 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Honey bee venom toxins trigger immunological, physiological, and neurological responses within victims. The high occurrence of bee attacks involving potentially fatal toxic and allergic reactions in humans and the prospect of developing novel pharmaceuticals make honey bee venom an attractive target for proteomic studies. Using label-free quantification, we compared the proteome and phosphoproteome of the venom of Africanized honeybees with that of two European subspecies, namely Apis mellifera ligustica and A. m. carnica. From the total of 51 proteins, 42 were common to all three subspecies. Remarkably, the toxins melittin and icarapin were phosphorylated. In all venoms, icarapin was phosphorylated at the 205Ser residue, which is located in close proximity to its known antigenic site. Melittin, the major toxin of honeybee venoms, was phosphorylated in all venoms at the 10Thr and 18Ser residues. 18Ser phosphorylated melittin-the major of its two phosphorylated forms-was less toxic compared to the native peptide. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lys49-phospholipases A2 (Lys49-PLA2s) are proteins found in bothropic snake venoms (Viperidae family) and belong to a class of proteins which presents a phospholipase A2 scaffold but are catalytically inactive. These proteins (also known as PLA2s-like toxins) exert a pronounced local myotoxic effect and are not neutralized by antivenom, being their study relevant in terms of medical and scientific interest. Despite of the several studies reported in the literature for this class of proteins only a partial consensus has been achieved concerning their functional-structural relationships. In this work, we present a comprehensive structural and functional study with the MjTX-II, a dimeric Lys49-PLA2 from Bothrops moojeni venom which includes: (i) high-resolution crystal structure; (ii) dynamic light scattering and bioinformatics studies in order to confirm its biological assembly; (iii) myographic and electrophysiological studies and, (iv) comparative studies with other Lys49-PLA2s. These comparative analyses let us to get important insights into the role of Lys122 amino acid, previously indicated as responsible for Lys49-PLA2s catalytic inactivity and added important elements to establish the correct biological assembly for this class of proteins. Furthermore, we show two unique sequential features of MjTX-II (an amino acid insertion and a mutation) in comparison to all bothropic Lys49-PLA2s that lead to a distinct way of ligand binding at the toxin's hydrophobic channel and also, allowed the presence of an additional ligand molecule in this region. These facts suggest a possible particular mode of binding for long-chain ligands that interacts with MjTX-II hydrophobic channel, a feature that may directly affect the design of structure-based ligands for Lys49-PLA2s. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the leaves of Solanum campaniforme (Solanaceae), eight solanidane alkaloids were isolated, four of which contain a p-hydroxyphenylethylamine unit. Their structures were established as: 22β,23β-epoxy-solanida-1,4-dien-3-one; 22α,23α-epoxy-10-epi-solanida-1,4,9-trien-3-one; 22α,23α-epoxy-solanida-4-en-3-one; 22β,23β-epoxy-solanida-4-en-3-one; (E)-N-[8′(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4,9-trien-3-imine; (E)-N-[8′(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4-dien-3-imine; (Z)-N-[8′(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4,9-trien-3-imine and (Z)-N-[8′(4-hydroxyphenyl)ethyl]-22α,23α-epoxy-solanida-1,4-dien-3-imine. All structures were determined using spectroscopic techniques, such as 1D and 2D NMR, and HRESIMS. The cytotoxicity and the antiophidic activities of the alkaloids were evaluated. The alkaloids did not show any cytotoxicity, but inhibited the main toxic actions of Bothrops pauloensis venom. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biofísica Molecular - IBILCE