980 resultados para Hepatic intermediary metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy metabolism supports both inhibitory and excitatory neurotransmission processes. This study investigated the specific contribution of astrocytic metabolism to γ-aminobutyric acid (GABA) synthesis and inhibitory GABAergic neurotransmission that remained to be ilucidated in vivo. Therefore, we measured (13) C incorporation into brain metabolites by dynamic (13) C nuclear magnetic resonance spectroscopy at 14.1 T in rats under α-chloralose anaesthesia during infusion of [1,6-(13) C]glucose. The enhanced sensitivity at 14.1 T allowed to quantify incorporation of (13) C into the three aliphatic carbons of GABA non-invasively. Metabolic fluxes were determined with a mathematical model of brain metabolism comprising glial, glutamatergic and GABAergic compartments. GABA synthesis rate was 0.11 ± 0.01 μmol/g/min. GABA-glutamine cycle was 0.053 ± 0.003 μmol/g/min and accounted for 22 ± 1% of total neurotransmitter cycling between neurons and glia. Cerebral glucose oxidation was 0.47 ± 0.02 μmol/g/min, of which 35 ± 1% and 7 ± 1% was diverted to the glutamatergic and GABAergic tricarboxylic acid cycles, respectively. The remaining fraction of glucose oxidation was in glia, where 12 ± 1% of the TCA cycle flux was dedicated to oxidation of GABA. 16 ± 2% of glutamine synthesis was provided to GABAergic neurons. We conclude that substantial metabolic activity occurs in GABAergic neurons and that glial metabolism supports both glutamatergic and GABAergic neurons in the living rat brain. We performed (13) C NMR spectroscopy in vivo at high magnetic field (14.1 T) upon administration of [1,6-(13) C]glucose. This allowed to measure (13) C incorporation into the three aliphatic carbons of GABA in the rat brain, in addition to those of glutamate, glutamine and aspartate. These data were then modelled to determine fluxes of energy metabolism in GABAergic and glutamatergic neurons and glial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine the frequency and factors associated with the presence of T2 shine-through effect in hepatic hemangiomas on diffusion-weighted (DW) magnetic resonance (MR) sequences. MATERIALS AND METHODS: This retrospective study was approved by institutional review board with waiver of informed consent. One hundred forty-nine consecutive patients with 388 hepatic hemangiomas who underwent a liver MR between January 2010 and November 2011 were included. MR analysis evaluated the lesion characteristics (signal intensities and enhancement patterns (classical, rapidly filling, delayed filling)), the presence of T2 shine-through effect on DW sequences (b values of 0, 150, and 600s/mm(2)), and apparent diffusion coefficient (ADC) values. Multivariate analysis was performed to study the factors associated with the T2 shine-through effect. RESULTS: T2 shine-through effect was observed in 204/388 (52.6%) of hepatic hemangiomas and in 100 (67.1%) patients. Mean ADC value of hemangiomas with T2 shine-through effect was significantly lower than hemangiomas without (2.0±0.48 vs 2.38±0.45, P<.0001). On multivariate analysis, high signal intensity on fat-suppressed T2-weighted fast spin-echo images, hemangiomas with classical or delayed enhancement, and the ADC of the liver were the only significant factors associated with T2 shine-through effect. CONCLUSION: T2 shine-through effect is commonly observed in hepatic hemangiomas and is related to hemangiomas characteristics. Radiologists should be aware of this phenomenon which could lead to misdiagnosis. Its presence should not question the diagnosis of hemangiomas when typical MR findings are found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of infusion of a triglyceride emulsion (which induces peripheral insulin resistance) and amino acids (which stimulate gluconeogenesis) on glucose metabolism were investigated in healthy lean humans during exogenous infusion of glucose. One group of subjects (n = 5) was infused for 7.5 h with 11.1 mumol/kg/min glucose; during the last 4 h, amino acids were also infused at a rate of 3.33 mg/kg/min. A second group of subjects (n = 5) was infused with glucose+lipids (Lipovenös, 10% 10 ml/min) for 7.5 h and amino acids were added during the last 4 h. Infusion of lipids suppressed the increase in glucose oxidation observed during infusion of glucose alone (delta glucose oxidation: -2.1 +/- 1.1 vs. + 4.5 +/- 1.4 mumol/kg/min; P < 0.05) and during infusion of glucose+amino acids (delta glucose oxidation: + 1.6 +/- 1.4 vs. + 10.6 +/- 1.2 mumol/kg/min; P < 0.05). Gluconeogenesis (determined from 13C glucose synthesis during infusion of 13C bicarbonate) increased from 1.1 +/- 0.2 mumol/kg/min during infusion of glucose and 1.6 +/- 0.3 during infusion of glucose+lipids to 3.2 +/- 0.4 and 3.1 +/- 0.4, respectively, when amino acid infusion was superimposed (P < 0.05 in both instances). Plasma glucose concentrations were identical during infusion of glucose alone or glucose+amino acids, with or without lipids. Insulin concentrations were significantly increased by lipids both during infusion of glucose alone and of glucose+amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of a 7 d high-fructose diet (HFrD) or control diet on lipid metabolism were studied in a group of six healthy lean males. Plasma NEFA and beta-hydroxybutyrate concentrations, net lipid oxidation (indirect calorimetry) and exogenous lipid oxidation (13CO2 production) were monitored in basal conditions, after lipid loading (olive oil labelled with [13C]triolein) and during a standardised mental stress. Lactate clearance and the metabolic effects of an exogenous lactate infusion were also monitored. The HFrD lowered plasma concentrations of NEFA and beta-hydroxybutyrate as well as lipid oxidation in both basal and after lipid-loading conditions. In addition, the HFrD blunted the increase in plasma NEFA and exogenous lipid oxidation during mental stress. The HFrD also increased basal lactate concentrations by 31.8 %, and lactate production by 53.8 %, while lactate clearance remained unchanged. Lactate infusion lowered plasma NEFA with the control diet, and net lipid oxidation with both the HFrD and control diet. These results indicate that a 7 d HFrD markedly inhibits lipolysis and lipid oxidation. The HFrD also increases lactate production, and the ensuing increased lactate utilisation may contribute to suppress lipid oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear hormone receptors called PPARs (peroxisome proliferator-activated receptors alpha, beta, and gamma) regulate the peroxisomal beta-oxidation of fatty acids by induction of the acyl-CoA oxidase gene that encodes the rate-limiting enzyme of the pathway. Gel retardation and cotransfection assays revealed that PPAR alpha heterodimerizes with retinoid X receptor beta (RXR beta; RXR is the receptor for 9-cis-retinoic acid) and that the two receptors cooperate for the activation of the acyl-CoA oxidase gene promoter. The strongest stimulation of this promoter was obtained when both receptors were exposed simultaneously to their cognate activators. Furthermore, we show that natural fatty acids, and especially polyunsaturated fatty acids, activate PPARs as potently as does the hypolipidemic drug Wy 14,643, the most effective activator known so far. Moreover, we discovered that the synthetic arachidonic acid analogue 5,8,11,14-eicosatetraynoic acid is 100 times more effective than Wy 14,643 in the activation of PPAR alpha. In conclusion, our data demonstrate a convergence of the PPAR and RXR signaling pathways in the regulation of the peroxisomal beta-oxidation of fatty acids by fatty acids and retinoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that (i) VPA is a net inducer of clozapine metabolism, and (ii) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods: After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results: VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14-39%) after controlling for confounding variables including smoking (35% lower, 28-56%). Discussion: Prospective studies are needed to definitively establish that VPA may (i) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and (ii) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: This research explored medical students' use and perception of technical language in a practical training setting to enhance skills in breaking bad news in oncology. METHODS: Terms potentially confusing to laypeople were selected from 108 videotaped interviews conducted in an undergraduate Communication Skills Training. A subset of these terms was included in a questionnaire completed by students (N=111) with the aim of gaining insight into their perceptions of different speech registers and of patient understanding. Excerpts of interviews were analyzed qualitatively to investigate students' communication strategies with respect to these technical terms. RESULTS: Fewer than half of the terms were clarified. Students checked for simulated patients' understanding of the terms palliative and metastasis/to metastasize in 22-23% of the interviews. The term ambulatory was spontaneously explained in 75% of the interviews, hepatic and metastasis/to metastasize in 22-24%. Most provided explanations were in plain language; metastasis/to metastasize and ganglion/ganglionic were among terms most frequently explained in technical language. CONCLUSION: A significant number of terms potentially unfamiliar and confusing to patients remained unclarified in training interviews conducted by senior medical students, even when they perceived the terms as technical. PRACTICE IMPLICATIONS: This exploration may offer important insights for improving future physicians' skills.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the synergistic effects of endurance training and hypoxia on endurance performance in normoxic and hypoxic conditions (approximately 3000 m above sea level) as well as on lactate and glucose metabolism during prolonged exercise. For this purpose, 14 well-trained cyclists performed 12 training sessions in conditions of normobaric hypoxia (HYP group, n = 7) or normoxia (NOR group, n = 7) over 4 weeks. Before and after training, lactate and glucose turnover rates were measured by infusion of exogenous lactate and stable isotope tracers. Endurance performance was assessed during incremental tests performed in normoxia and hypoxia and a 40 km time trial performed in normoxia. After training, performance was similarly and significantly improved in the NOR and HYP groups (training, P < 0.001) in normoxic conditions. No further effect of hypoxic training was found on markers of endurance performance in hypoxia (training x hypoxia interaction, n.s.). In addition, training and hypoxia had no significant effect on lactate turnover rate. In contrast, there was a significant interaction of training and hypoxia (P < 0.05) on glucose metabolism, as follows: plasma insulin and glucose concentrations were significantly increased; glucose metabolic clearance rate was decreased; and the insulin to glucagon ratio was increased after training in the HYP group. In conclusion, our results show that, compared with training in normoxia, training in hypoxia has no further effect on endurance performance in both normoxic and hypoxic conditions or on lactate metabolic clearance rate. Additionally, these findings suggest that training in hypoxia impairs blood glucose regulation in endurance-trained subjects during exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many physiological processes in organisms from bacteria to man are rhythmic, and some of these are controlled by self-sustained oscillators that persist in the absence of external time cues. Circadian clocks are perhaps the best characterized biological oscillators and they exist in virtually all light-sensitive organisms. In mammals, they influence nearly all aspects of physiology and behavior, including sleep-wake cycles, cardiovascular activity, endocrinology, body temperature, renal activity, physiology of the gastro-intestinal tract, and hepatic metabolism. The master pacemaker is located in the suprachiasmatic nuclei, two small groups of neurons in the ventral part of the hypothalamus. However, most peripheral body cells contain self-sustained circadian oscillators with a molecular makeup similar to that of SCN (suprachiasmatic nucleus) neurons. This organization implies that the SCN must synchronize countless subsidiary oscillators in peripheral tissues, in order to coordinate cyclic physiology. In this review, we will discuss some recent studies on the structure and putative functions of the mammalian circadian timing system, but we will also point out some apparent inconsistencies in the currently publicized model for rhythm generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to characterise the current autotrophic compartment of the Albufera des Grau coastal lagoon (Menorca, Balearic Islands) and to assess the relationship between the submerged macrophytes and the limnological parameters of the lagoon. During the study period the submerged vegetation was dominated by the macrophyte Ruppia cirrhosa, which formed dense extensive meadows covering 79% of the surface. Another macrophyte species, Potamogeton pectinatus, was also observed but only forming small stands near the rushing streams. Macroalgae were only occasionally observed. Macrophyte biomass showed a clear seasonal trend, with maximum values in July. The biomass of R. cirrhosa achieved 1760 g DW m-2, the highest biomass ever reported for this species in the literature. The seasonal production-decomposition cycle of the macrophyte meadows appears to drive the nutrient dynamics and carbon fluxes in the lagoon. Despite the significant biomass accumulation and the absence of a washout of nutrients and organic matter to the sea, the lagoon did not experience a dystrophic collapse. These results indicate that internal metabolism is more important than exchange processes in the lagoon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of mice expressing PDAPP (+/+ or +/-) was studied in the Morris place navigation task. Different lines of questions were investigated using PDAPP+/- mice in which the activity of the cytokine Tumor Necrosing Factor alpha (TNFalpha) was attenuated by chronic treatment with anti-TNF or deleting TNFalpha (TNF-/-). Two different categories of behavior were analyzed in adult (6 months) and middle aged (15 months) subjects. Classically, the cognitive performance was assessed from the escape efficacy and quantitative bias toward the training position in a Morris water maze. Second, stereotyped circling was quantified, along with more qualitative behavioral impairments such as self-mutilation or increased reactivity. Our results can be summarized as follows. (1) All of the PDAPP mice expressed reduced cognitive performance in the Morris task, but only those with a clear-cut amyloid burden in the hippocampus showed behavioral abnormalities such as stereotyped circling. (2) Chronic treatment with anti-TNF prevented the development of pathological circling in the 6-month-old mice but not in the 15-month-old mice and had no significant effect on amyloid burden. (3) The absence of TNFalpha prevented the development of stereotyped circling in 6- and 15-month-old mice but increased amyloid burden after 15 months. These data indicate that PDAPP mice express cognitive impairments disregarding absence of TNF. The pathological behavioral anomalies related to the PDAPP mutation seem reduced by treatments interfering with TNFalpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To analyze the effect of tight glycemic control with the use of intensive insulin therapy on cerebral glucose metabolism in patients with severe brain injury. DESIGN: Retrospective analysis of a prospective observational cohort. SETTING: University hospital neurologic intensive care unit. PATIENTS: Twenty patients (median age 59 yrs) monitored with cerebral microdialysis as part of their clinical care. INTERVENTIONS: Intensive insulin therapy (systemic glucose target: 4.4-6.7 mmol/L [80-120 mg/dL]). MEASUREMENTS AND MAIN RESULTS: Brain tissue markers of glucose metabolism (cerebral microdialysis glucose and lactate/pyruvate ratio) and systemic glucose were collected hourly. Systemic glucose levels were categorized as within the target "tight" (4.4-6.7 mmol/L [80-120 mg/dL]) vs. "intermediate" (6.8-10.0 mmol/L [121-180 mg/dL]) range. Brain energy crisis was defined as a cerebral microdialysis glucose <0.7 mmol/L with a lactate/pyruvate ratio >40. We analyzed 2131 cerebral microdialysis samples: tight systemic glucose levels were associated with a greater prevalence of low cerebral microdialysis glucose (65% vs. 36%, p < 0.01) and brain energy crisis (25% vs.17%, p < 0.01) than intermediate levels. Using multivariable analysis, and adjusting for intracranial pressure and cerebral perfusion pressure, systemic glucose concentration (adjusted odds ratio 1.23, 95% confidence interval [CI] 1.10-1.37, for each 1 mmol/L decrease, p < 0.001) and insulin dose (adjusted odds ratio 1.10, 95% CI 1.04-1.17, for each 1 U/hr increase, p = 0.02) independently predicted brain energy crisis. Cerebral microdialysis glucose was lower in nonsurvivors than in survivors (0.46 +/- 0.23 vs. 1.04 +/- 0.56 mmol/L, p < 0.05). Brain energy crisis was associated with increased mortality at hospital discharge (adjusted odds ratio 7.36, 95% CI 1.37-39.51, p = 0.02). CONCLUSIONS: In patients with severe brain injury, tight systemic glucose control is associated with reduced cerebral extracellular glucose availability and increased prevalence of brain energy crisis, which in turn correlates with increased mortality. Intensive insulin therapy may impair cerebral glucose metabolism after severe brain injury.