967 resultados para Hemoprotozoan Parasite
Resumo:
The efficacy of chloroquine treatment of uncomplicated Plasmodium falciparum malaria in East Timor was investigated via molecular tools. Genotyping of the polymorphic markers msp1 and msp2 was performed to investigate the number and type of parasite alleles in pre- and posttreatment blood samples collected from 48 patients. Patients were infected with a minimum of 8 msp1 and 14 msp2 allelic types of parasite, and 43% of the patients had more than one allelic type before treatment. The genotyping also revealed that 66.7% of the patients were infected with at least one identical allelic type of parasite before and after treatment and therefore were likely to have experienced recrudescence. All parasites in pre- and posttreatment blood samples carried the K76T mutation in pfcrt, regardless of the clinical response to chloroquine. The sequence polymorphism patterns in pfcrt in the majority of parasites examined were identical to those observed in Bougainville, Papua New Guinea.
Resumo:
Background The ability of T cells, acting independently of antibodies, to control malaria parasite growth in people has not been defined. If such cell-mediated immunity was shown to be effective, an additional vaccine strategy could be pursued. Our aim was to ascertain whether or not development of cell-mediated immunity to Plasmodium falciparum blood-stage infection could be induced in human beings by exposure to malaria parasites in very low density. Methods We enrolled five volunteers from the staff at our research institute who had never had malaria. We used a cryopreserved inoculum of red cells infected with P falciparum strain 3D7 to give them repeated subclinical infections of malaria that we then cured early with drugs, to induce cell-mediated immune responses. We tested for development of immunity by measurement of parasite concentrations in the blood of volunteers by PCR of the multicopy gene STEVOR and by following up the volunteers clinically, and by measuring antibody and cellular immune responses to the parasite. Findings After challenge and a extended period without drug cure, volunteers were protected against malaria as indicated by absence of parasites or parasite DNA in the blood, and absence of clinical symptoms. Immunity was characterised by absence of detectable antibodies that bind the parasite or infected red cells, but by the presence of a proliferative T-cell response, involving CD4+ and CD8+ T cells, a cytokine response, consisting of interferon gamma but not interleukin 4 or interleukin 10, induction of high concentrations of nitric oxide synthase activity in peripheral blood mononuclear cells, and a drop in the number of peripheral natural killer T cells. Interpretation People can be protected against the erythrocytic stage of malaria by a strong cell-mediated immune response, in the absence of detectable parasite-specific antibodies, suggesting an additional strategy for development of a malaria vaccine.
Resumo:
Scabies ('Itch Mite') is truly a Great Neglected Disease that inflicts misery on millions. Molecular approaches, while still in their infancy, are providing a better understanding of the parasite and will have important implications for control and prevention. It has long been thought that dogs may act as a reservoir for human infections. However, genetic studies cast doubt over this supposition.
Resumo:
Recent electrophoretic data have indicated that Schistosoma japonicum in mainland China may be a species complex, with the existence of a cryptic species being predicted from the analysis of schistosome populations from Sichuan province. To investigate the Sichuan form of S. japonicum, 4.9 kbp of mitochondrial DNA from each of three samples of the parasite from China (two from Sichuan and one from Hunan) and one from Sorsogon in the Philippines were amplified, sequenced and characterized. The sequence data were compared with those from the related South-east Asian species of S. mekongi (Khong Island, Laos) and S. malayensis (Baling, Malaysia) and that from S. japonicum from Anhui (China). At both the nucleotide and amino-acid levels, the variation among the five S. japonicum samples was limited ( < 1%). This was consistent with the conclusions drawn from previous molecular studies, in which minimal variation among S. japonicum populations was also detected. In contrast, S. mekongi and S. malayensis, species recognized as separate but closely related, differ from each other by about 10%, and each differs by 25%-26% from S. japonicum. Phylogenetic trees provided a graphic representation of these differences, showing all S. japonicum sequences to be very tightly clustered and distant from S. mekongi and S. malayensis, the last two being clearly distinct from each other. The results thus indicate no significant intraspecific genetic variation among S. japonicum samples collected from different geographical areas and do not support the idea of a distinct form in Sichuan.
Resumo:
Distinct Echinococcus granulosus life cycle patterns have been described in North America: domestic and sylvatic. Gene sequences of the sylvatic E. granulosus indicate that it represents a separate variant. Case-based data have suggested that the course of sylvatic disease is less severe than that of domestic disease. which led to the recommendation to treat cystic echinococcosis patients in the Arctic by careful medical management rather than by aggressive surgery. We recently reported the first two documented E. granalosus human cases in Alaska with accompanying severe sequelae. Here we describe the results of molecular genetic analysis of the cyst material of one of the subjects that supported identification of the parasite as the sylvatic (cervid) strain and not the domestic (common sheep strain), which was initially thought to be implicated in these unusually severe Alaskan cases.
Resumo:
Chemotherapy is central to the control of many parasite infections of both medical and veterinary importance. However, control has been compromised by the emergence of drug resistance in several important parasite species. Such parasites cover a broad phylogenetic range and include protozoa, helminths and arthropods. In order to achieve effective parasite control in the future, the recognition and diagnosis of resistance will be crucial. This demand for early, accurate diagnosis of resistance to specific drugs in different parasite species can potentially be met by modern molecular techniques. This paper summarises the resistance status of a range of important parasites and reviews the available molecular techniques for resistance diagnosis. Opportunities for applying successes in some species to other species where resistance is less well understood are explored. The practical application of molecular techniques and the impact of the technology on improving parasite control are discussed. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Tryanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles it? the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory), transport and protein glycosylation that may be exploited in developing new antiparasite drugs.
Resumo:
Merozoite surface protein 1 (MSP1) of malaria parasites undergoes proteolytic processing at least twice before invasion into a new RBC. The 42-kDa fragment, a product of primary processing, is cleaved by proteolytic enzymes giving rise to MSP1(33), which is shed from the merozoite surface, and MSP1(19), which is the only fragment carried into a new RBC. In this study, we have identified T cell epitopes on MSP1(33) of Plasmodium yoelii and have examined their function in immunity to blood stage malaria. Peptides 20 aa in length, spanning the length of MSP1(33) and overlapping each other by 10 aa, were analyzed for their ability to induce T cell proliferation in immunized BALB/c and C57BL/6 mice. Multiple epitopes were recognized by these two strains of mice. Effector functions of the dominant epitopes were then investigated. Peptides Cm15 and Cm21 were of particular interest as they were able to induce effector T cells capable of delaying growth of lethal P. yoelii YM following adoptive transfer into immuno-deficient mice without inducing detectable Ab responses. Homologs of these epitopes could be candidates for inclusion in a subunit vaccine.
Resumo:
A new RTE-like, non-long terminal repeat retrotransposon, termed SjR2, from the human blood fluke, Schistosoma japonicum, is described. SjR2 is similar to3.9 kb in length and is constituted of a single open reading frame encoding a polyprotein with apurinic/apyrimidinic endonuclease and reverse transcriptase domains. The open reading frame is bounded by 5'- and 3'-terininal untranslated regions and, at its 3-terminus, SjR2 bears a short (TGAC)(3) repeat. Phylogenetic analyses based on conserved domains of reverse transcriptase or endonuclease revealed that SjR2 belonged to the RTE clade of non-long terminal repeat retrotransposons. Further, SjR2 was homologous, but probably not orthologous, to SR2 front the African blood fluke, Schistosoma mansoni; this RTE-like family of non-long terminal repeat retrotransposons appears to have arisen before the divergence of the extant schistosome species. Hybridisation analyses indicated that similar to 10,000 copies of SjR2 were dispersed throughout the S. japonicum chromosomes, accounting for up to 14% of the nuclear genome. Messenger RNAs encoding the reverse transcriptase and endonuclease domains of SjR2 were detected in several developmental stages of the schistosome, indicating that the retrotransposon was actively replicating within the genome of the parasite. Exploration of the coding and non-coding regions of SjR2 revealed two notable characteristics. First, the recombinant reverse transcriptase domain of SjR2 expressed in insect cells primed reverse transcription of SjR2 mRNA in vitro. By contrast, recombinant SjR2-endonuclease did not appear to cleave schistosome or plasmid DNA. Second, the 5'-untranslated region of SjR2 was >80% identical to the 3-untranslated region of a schistosome heat shock protein-70 gene (hsp-70) in the antisense orientation, indicating that SjR2-like elements were probably inserted into the non-coding regions of ancestral S. japonicum HSP-70, probably after the species diverged from S. mansoni. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Toxic (Gobiodon spp.) and non-toxic (Paragobiodon xanthosomus) gobies became infected with external parasites (gnathiid isopods) at equal rates in a laboratory experiment. Parasites were evenly distributed over the body of P. xanthosomus but were mostly confined to the fins of Gobiodon spp., where toxin glands are less abundant. Skin toxins were not associated with the rate of infection but their distribution did appear to influence the site of parasite attachment. (C) 2003 The Fisheries Society of the British Isles.
Resumo:
The extent to which density-dependent processes regulate natural populations is the subject of an ongoing debate. We contribute evidence to this debate showing that density-dependent processes influence the population dynamics of the ectoparasite Aponomma hydrosauri (Acari: Ixodidae), a tick species that infests reptiles in Australia. The first piece of evidence comes from an unusually long-term dataset on the distribution of ticks among individual hosts. If density-dependent processes are influencing either host mortality or vital rates of the parasite population, and those distributions can be approximated with negative binomial distributions, then general host-parasite models predict that the aggregation coefficient of the parasite distribution will increase with the average intensity of infections. We fit negative binomial distributions to the frequency distributions of ticks on hosts, and find that the estimated aggregation coefficient k increases with increasing average tick density. This pattern indirectly implies that one or more vital rates of the tick population must be changing with increasing tick density, because mortality rates of the tick's main host, the sleepy lizard, Tiliqua rugosa, are unaffected by changes in tick burdens. Our second piece of evidence is a re-analysis of experimental data on the attachment success of individual ticks to lizard hosts using generalized linear modelling. The probability of successful engorgement decreases with increasing numbers of ticks attached to a host. This is direct evidence of a density-dependent process that could lead to an increase in the aggregation coefficient of tick distributions described earlier. The population-scale increase in the aggregation coefficient is indirect evidence of a density-dependent process or processes sufficiently strong to produce a population-wide pattern, and thus also likely to influence population regulation. The direct observation of a density-dependent process is evidence of at least part of the responsible mechanism.
Resumo:
Experimental infections were used to track the fate of the dorsal sensilla of Merizocotyle icopae (Monogenea: Monocotylidae) from nasal tissue of the shovelnose ray, Rhinobatos typus (Rhinobatidae). Scanning and transmission electron microscopy revealed that 3 types of uniciliate dorsal sensilla exist at different times in the development of the monogenean. Type 1 sensilla have little or no invagination where the cilium exits the distal end of the dendrite and possess a ring of epidermis surrounding the cilium distal to the invagination. Type 2 sensilla have a deep invagination where the cilium exits the dendrite. Type 3 sensilla can be distinguished from the other types by the shape of the dendrite. The larvae have predominantly Type I dorsal sensilla, most of which are lost approximately 24 h after infection and a few Type 2 sensilla, which are retained. Additional Type 2 sensilla (termed Adult Type 2 sensilla), which are slightly different morphologically from the Type 2 sensilla of the larvae, form in later stages of development. Numerous Type 3 sensilla are unique to the dorsal surface of adults. Loss of all Type I sensilla upon attachment to the host, R. typus, suggests that these may be chemo- or mechanoreceptors responsible for host location by the swimming infective larvae. Type 2 sensilla appear to be important in the larvae, juveniles, and adults whereas the modality mediated by Type 3 is specific to adults. (C) 2003 Wiley-Liss, Inc.
Resumo:
Trichomoniasis is the most common, sexually transmitted infection. It is caused by the flagellated protozoan parasite Trichomonas vaginalis. Symptoms include vaginitis and infections have been associated with preterm delivery, low birth weight and increased infant mortality, as well as predisposing to HIV/AIDS and cervical cancer. Trichomoniasis has the highest prevalence and incidence of any sexually transmitted infection. The 5-nitroimidazole drugs, of which metronidazole is the most prescribed, are the only approved, effective drugs to treat trichomoniasis. Resistance against metronidazole is frequently reported and cross-resistance among the family of 5-nitroimidazole drugs is common, leaving no alternative for treatment, with some cases remaining unresolved. The mechanism of metronidazole resistance in T. vaginalis from treatment failures is not well understood, unlike resistance which is developed in the laboratory under increasing metronidazole pressure. In the latter situation, hydrogenosomal function which is involved in activation of the prodrug, metronidazole, is down-regulated. Reversion to sensitivity is incomplete after removal of drug pressure in the highly resistant parasites while clinically resistant strains, so far analysed, maintain their resistance levels in the absence of drug pressure. Although anaerobic resistance has been regarded as a laboratory induced phenomenon, it clearly has been demonstrated in clinical isolates. Pursuit of both approaches will allow dissection of the underlying mechanisms. Many alternative drugs and treatments have been tested in vivo in cases of refractory trichomoniasis, as well as in vitro with some successes including the broad spectrum anti-parasitic drug nitazoxanide. Drug resistance incidence in T. vaginalis appears to be on the increase and improved surveillance of treatment failures is urged.
Resumo:
The parasite fauna of Spanish mackerel Scomberomorus commerson from 10 sites across northern Australia and one site in Indonesia, was examined to evaluate the degree of movement and subsequent stock structure of the fish. Kupang fish (Indonesia) had very few Terranova spp.. Grillotia branchi, Otobothrium cysticum or Pterobothrium sp. compared to Australian fish, indicating that no Australian fish enter the Kupang fishery. Univariate and discriminant function analysis of four 'temporary' parasite species, the copepod Pseudocyenoides armatus and the monogeneans Gotocotyla bivaginalis, Pricea multae and Pseudothoracocotyla ovalis, demonstrated little similarity between areas of northern Australia, indicating minimal short-term exchange between neighbouring groups of S. commerson. Analyses of five 'permanent' parasite species, the larval helminths G. branchi, O. cysticum, Pterobothrium sp., Callitetrarhynchus gracilis and Paranybelinia balli, also revealed large differences between areas thus indicating long-term separation. There are at least six parasitological stocks across northern Australia: Fog Bay/Bathurst Island, Cape Wessel. Groote/Sir Edward Pellew. Mornington Island, Weipa. and the Torres Strait. The occurrence of a few irregular fish in the samples suggested that LIP to 5% of fish moved between stocks during their lifetime. The similarity of within-school variability to that between schools showed that the fish do not form long-term school associations. (C) 2003 The Fisheries Society of the British Isles.
Resumo:
The phylogeny of representative haemozoan species of the phylum Apicomplexa was reconstructed by cladistic analyses of ultrastructural and life-cycle characteristics. The analysis incorporated 4 apicomplexans previously not included in phylogenetic reconstructions: Haemogregarina clelandi from the Brisbane River tortoise (Emydura signata), Hepatozoon sp. from the slaty grey snake (Stegonotus cucullatus), Hepatozoon (Haemogregarina) boigae from the brown tree snake (Boiga irregularis), and Haemoproteus chelodina from the saw-shelled tortoise (Elseya latisternum). There was no apparent correlation between parasite phylogeny and that of their vertebrate hosts, but there appeared to be some relationship between parasites and their intermediate hosts, suggestive of parasite/vector co-evolution.