939 resultados para HYDROCHLORIDE SALTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel sol-gel process for preparing oxides and mixed oxides sols from precipitation and peptization process is reported in this article. Inorganic salts are used as raw materials in this study. It is found that the amount of acid has great influence on the stability and particle diameter distribution of the precursor sols. Ultrasonic treatment is used to prepare alumina sol at room temperature. The result of Al-27 NMR shows that there exist Al-13(7+) species in the sol. By controlling the sol particles with narrow particle diameter distribution, alumina, titania and silica-alumina (SA) materials with narrow mesoporous distribution are formed by regular packing of sol particles during gelation without using any templates. The results also show that the structure and particle diameter distribution of precursor sol determine the final materials' texture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine sponge cell culture is a potential route for the sustainable production of sponge-derived bioproducts. Development of a basal culture medium is a prerequisite for the attachment, spreading, and growth of sponge cells in vitro. With the limited knowledge available on nutrient requirements for sponge cells, a series of statistical experimental designs has been employed to screen and optimize the critical nutrient components including inorganic salts (ferric ion, zinc ion, silicate, and NaCl), amino acids (glycine, glutamine, and aspartic acid), sugars (glucose, sorbitol, and sodium pyruvate), vitamin C, and mammalian cell medium (DMEM and RPMI 1640) using MTT assay in 96-well plates. The marine sponge Hymeniacidon perleve was used as a model system. Plackett-Burman design was used for the initial screening, which identified the significant factors of ferric ion, NaCl, and vitamin C. These three factors were selected for further optimization by Uniform Design and Response Surface Methodology (RSM), respectively. A basal medium was finally established, which supported an over 100% increase in viability of sponge cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly ordered mesoporous ethanesilica (MES) with 2D hexagonal structure was synthesized from 1,2-bis(trimethoxysilyl) ethane under neutral conditions for the first time. Divalent salts, such as NiCl2, MgCl2, ZnCl2, ZnSO4 and Zn(NO3)(2), were used to help the formation of the ordered mesostructure. The MES samples were characterized by powder X-ray diffraction, nitrogen sorption, transmission electron microscopy, FT-IR, C-13 and Si-29 solid-state NMR and thermal gravimetric analysis. A phase transition from a disordered wormhole-like structure to an ordered P6mm structure was observed upon the addition of inorganic salts. The pore size of the MES decreases from 4.7 to 3.9 nm with increasing content of the inorganic salts. Fluoride was also found to be important for the formation of ordered MES under neutral conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a carboxymethyl cellulose (CMC)-mediated sol-gel process was developed to synthesize the alumina hydoxide whiskers. During the process, inexpensive inorganic salts were used as precursors and supercritical drying method was used to extract the water in hydrogel. The influences of CMC on the gel formation and the particle morphology were investigated. The results show that the formation of CMC-aluminium hydroxide organic-inorganic hybridgels led to a morphology transcription process from CMC micelles to aluminium hydroxide gel, as a result, the precursor with whiskerious morphology was obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two different kinds of sensors have been developed by using the same kind of vapochromic complexes. The vapochromic materials [Au2Ag2(C6F5)(4)L-2](n) have different colours depending on the ligand L. These materials change, reversibly, their optical properties, colour and fluorescence, in the presence of the vapours of volatile organic compounds (VOCs). For practical applications, two different ways of fixing the vapochromic material to the optical fibre have been used: the sol-gel technique and the electrostatic self-assembly method (ESA). With the first technique the sensors can even be used to detect VOCs in aqueous solutions, and using the second method it has been possible to develop nanosensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition of equine milk differs considerably from that of the milk of the principal dairying species, i.e., the cow, buffalo, goat and sheep. Because equine milk resembles human milk in many respects and is claimed to have special therapeutic properties, it is becoming increasingly popular in Western Europe, where it is produced on large farms in several countries. Equine milk is considered to be highly digestible, rich in essential nutrients and to possess an optimum whey protein:casein ratio, making it very suitable as a substitute for bovine milk in paediatric dietetics. There is some scientific basis for the special nutritional and health-giving properties of equine milk but this study provides a comprehensive analysis of the composition and physico-chemical properties of equine milk which is required to fully exploit its potential in human nutrition. Quantification and distribution of the nitrogenous components and principal salts of equine milk are reported. The effects of the high concentration of ionic calcium, large casein micelles (~ 260 nm), low protein, lack of a sulphydryl group in equine β-lactoglobulin and a very low level of κ-casein on the physico-chemical properties of equine milk are reported. This thesis provides an insight into the stability of equine casein micelles to heat, ethanol, high pressure, rennet or acid. Differences in rennet- and acid-induced coagulation between equine and bovine milk are attributed not only to the low casein content of equine milk but also to differences in the mechanism by which the respective micelles are stabilized. It has been reported that β-casein plays a role in the stabilization of equine casein micelles and proteomic techniques support this view. In this study, equine κ-casein appeared to be resistant to hydrolysis by calf chymosin but equine β-casein was readily hydrolysed. Resolution of equine milk proteins by urea-PAGE showed the multi-phosphorylated isoforms of equine αs- and β-caseins and capillary zone electrophoresis showed 3 to 7 phosphorylated residues in equine β-casein. In vitro digestion of equine β-casein by pepsin and Corolase PP™ did not produce casomorphins BCM-5 or BCM-7, believed to be harmful to human health. Electron microscopy provided very clear, detailed images of equine casein micelles in their native state and when renneted or acidified. Equine milk formed flocs rather then a gel when renneted or acidified which is supported by dynamic oscillatory analysis. The results presented in this thesis will assist in the development of new products from equine milk for human consumption which will retain some of its unique compositional and health-giving properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes work carried out on the synthesis of novel 5- and 11-substituted ellipticines and derivatives of the ellipticine analogues, isoellipticine and deazaellipticine, followed by investigation of their potential as anti-cancer agents. Preparation of the key 5- and 11-substituted ellipticine targets involved the development of regiospecific, sequential alkylation reactions with alkenyllithium and Grignard reagents. Investigation of these novel reactions resulted in a new route towards 5-substituted ellipticines via Grignard reaction with vinylmagnesium bromide. These novel 5-vinylellipticine derivatives were further functionalised in an ozonolysis reaction, followed by oxidation to give a range of novel 5-substituted ellipticines. Less success was encountered in the 11-substituted ellipticine series, however preparation of these derivatives using a previously published route was accomplished, and the resulting 11-formylellipticine was further derivatised to give a panel of novel 9- and 11-substituted ellipticines, incorporating amide, carboxylate, imine and amine functionality. The successful route towards 5-substituted ellipticines was applied to the preparation of a range of novel 11-substituted isoellipticines and 6-substituted deazaellipticines, the first time substantial synthesis has been undertaken with these analogues. In addition to this, the first preparation of isoellipticinium salts is described, and a panel of novel isoellipticinium, 7 formylisoellipticinium and 7-hydroxyisoellipticinium salts were synthesised in good yields. Biological evaluation of a panel of 43 novel ellipticine, isoellipticine and deazaellipticine derivatives was accomplished with a topoisomerase II decatenation assay and submission to the NCI 60-cell line screen. Four novel isoellipticine topoisomerase II inhibitors were identified from the decatenation assay, with strong activity at 10 μM. In addition to this, NCI screening identified five highly cytotoxic ellipticine and isoellipticine compounds with remarkable selectivity profiles for different cancer types. These novel lead compounds represent new templates for further research and synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of functional foods with bioactive components requires component stability in foods and ingredients. Stabilization of sensitive bioactive components can be achieved by entrapment or encapsulation of these components in solid food matrices. Lactose or trehalose was used as the structure-forming material for the entrapment of hydrophilic ascorbic acid and thiamine hydrochloride or the encapsulation of oil particles containing hydrophobic α-tocopherol. In the delivery of hydrophobic components, milk protein isolate, soy protein isolate, or whey protein isolate were used as emulsifiers and, in some cases, applied in excess amount to form matrices together with sugars. Dehydrated amorphous structures with bioactives were produced by freezing and freeze-drying. Experimental results indicated that: (i) lactose and trehalose showed similar water sorption and glass transition but very different crystallization behavior as pure sugars; (ii) the glass transition of sugar-based systems was slightly affected by the presence of other components in anhydrous systems but followed closely that of sugar after water plasticization; (iii) sugar crystallization in mixture systems was composition-dependent; (iv) the stability of bioactives was better retained in the amorphous matrices, although small losses of stability were observed for hydrophilic components above glass transition and for hydrophobic components as a function of water activity; (v) sugar crystallization caused significant loss of hydrophilic bioactives as a result of the exclusion from the continuous crystalline phase; (vi) loss of hydrophobic bioactives upon sugar crystallization was a result of dramatic change of emulsion properties and the exclusion of oil particles from the protecting structure; (vii) the double layers at the hydrophilic-hydrophobic interfaces improved the stability of hydrophobic bioactives in dehydrated systems. The present study provides information on the physical and chemical stability of sugar-based dehydrated delivery systems, which could be helpful in designing foods and ingredients containing bioactive components with improved storage stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functional food ingredients, with scientifically proven and validated bioactive effects, present an effective means of inferring physiological health benefits to consumers to reduce the risk of certain diseases. The search for novel bioactive compounds for incorporation into functional foods is particularly active, with brewers’ spent grain (BSG, a brewing industry co-product) representing a unique source of potentially bioactive compounds. The DNA protective, antioxidant and immunomodulatory effects of phenolic extracts from both pale (P1 - P4) and black (B1 – B4) BSG were examined. Black BSG extracts significantly (P < 0.05) protected against DNA damage induced by hydrogen peroxide (H2O2) and extracts with the highest total phenolic content (TPC) protected against 3-morpholinosydnonimine hydrochloride (SIN-1)-induced oxidative DNA damage, measured by the comet assay. Cellular antioxidant activity assays were used to measured antioxidant potential in the U937 cell line. Extracts P1 – P3 and B2 - B4 demonstrated significant (P < 0.05) antioxidant activity, measured by the superoxide dismutase (SOD) activity, catalase (CAT) activity and gluatathione (GSH) content assays. Phenolic extracts P2 and P3 from pale BSG possess anti-inflammatory activity measured in concanavalin-A (conA) stimulated Jurkat T cells by an enzyme-linked immunosorbent assay (ELISA); significantly (P < 0.05) reducing production of interleukin-2 (IL-2), interleukin-4 (IL-4, P2 only), interleukin-10 (IL-10) and interferon-γ (IFN-γ). Black BSG phenolic extracts did not exhibit anti-inflammatory effects in vitro. Hydroxycinnamic acids (HA) have previously been shown to be the phenolic acids present at highest concentration in BSG; therefore the HA profile of the phenolic extracts used in this research, the original barley (before brewing) and whole BSG was characterised and quantified using high performance liquid chromatography (HPLC). The concentration of HA present in the samples was in the order of ferulic acid (FA) > p-coumaric acid (p-CA) derivatives > FA derivatives > p-CA > caffeic acid (CA) > CA derivatives. Results suggested that brewing and roasting decreased the HA content. Protein hydrolysates from BSG were also screened for their antioxidant and anti-inflammatory potential. A total of 34 BSG protein samples were tested. Initial analyses of samples A – J found the protein samples did not exert DNA protective effects (except hydrolysate H) or antioxidant effects by the comet and SOD assays, respectively. Samples D, E, F and J selectively reduced IFN-γ production (P < 0.05) in Jurkat T cells, measured using enzyme linked immunosorbent assay (ELISA). Further testing of hydrolysates K – W, including fractionated hydrolysates with molecular weight < 3, < 5 and > 5 kDa, found that higher molecular weight (> 5 kDa) and unfractionated hydrolysates demonstrate greatest anti-inflammatory effects, while fractionated hydrolysates were also shown to have antioxidant activity, by the SOD activity assay. A commercially available yogurt drink (Actimel) and snack-bar and chocolate-drink formulations were fortified with the most bioactive phenolic and protein samples – P2, B2, W, W < 3 kDa, W < 5 kDa, W > 5 kDa. All fortified foods were subjected to a simulated gastrointestinal in vitro digestion procedure and bioactivity retention in the digestates was determined using the comet and ELISA assays. Yogurt fortified with B2 digestate significantly (P < 0.05) protected against H2O2-induced DNA damage in Caco-2 cells. Greatest immunomodulatory activity was demonstrated by the snack-bar formulation, significantly (P < 0.05) reducing IFN-γ production in con-A stimulated Jurkat T cells. Hydrolysate W significantly (P < 0.05) increased the IFN-γ reducing capacity of the snack-bar. Addition of fractionated hydrolysate W < 3 kDa and W < 5 kDa to yogurt also reduced IL-2 production to a greater extent than the unfortified yogurt (P < 0.05).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes modelling, synthesis, spectroscopic and physical characterisation, as well as application of Magnesium, Calcium and Copper β-diketonate, β-ketoiminate, β-diiminate, Schiff base, amide and fluorenyl compounds. The selected compounds could potentially find application in materials deposition using Atomic Layer Deposition (ALD), MOCVD, CVD and Sol-Gel techniques. Quantum chemical modelling was used as a tool to perform the comprehensive and rapid study of magnesium and calcium precursor molecules in order to predict which of them would be more successful in ALD of metal oxides. Precursor chemistry plays a key role in ALD, since precursors must be volatile, thermally stable, chemisorb on the surface and react rapidly with existing surface groups. This Thesis describes one aspect of this, surface reactivity between ligands and hydroxyl groups, via a gas-phase model with energetics computed at the level of Density Functional Theory (DFT). A number of different synthetic strategies, both aerobic and anaerobic, were investigated for the synthesis of the described metal complexes. These included the use of different metal starting reagents such as, anhydrous and hydrated inorganic metal salts, metal alkyls and Grignard reagents. Some of previously unreported metal complexes of homoleptic and heteroleptic magnesium, calcium and copper β-diketonates, β-ketoiminates, β-diiminates, amides and Schiff base type were synthesised and characterised: [Mg(hfpd)2(DipPa)], [Mg(hfpd)2(MapH)2], [Mg(hf-ebp)(THF)2], [Mg(tf-Pap)Cl(THF)2], [Ca(PhNacnac)2], [Cu(tf-Pap)2], [Cu(PhNacnac)2], [Cu(hf-ebp)], [Cu(DipPa)] and [Cu(DipPa)2(4,4’-bypy)]. A comprehensive study on the thermal properties of magnesium, calcium and copper β-diketonates, β-ketoiminates, β-diiminates, Schiff base, amide and fluorenyl complexes was performed using TGA and sublimation of selected compounds. Atomic Layer Deposition of MgO using magnesium β-ketoiminate – [bis{(4-N-phenyl)-2-pentonato} magnesium] and β-diketonate - [bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)(THF)magnesium hydrate] was performed on Si(100) substrates at 180°C and 0.2 Torr using O2 plasma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physicochemical properties of cheese and milk gels are greatly influenced by molecular interactions between the casein proteins involving calcium. Novel experiments were designed to investigate the relationship between insoluble caseinbound cations and rheological properties of Cheddar cheese and rennet-induced milk gels. Cheddar cheese and rennet-induced milk gels were supplemented with Mg2+ or Sr2+ to compare their effects on their rheological properties to those previously reported in literature for Ca2+ supplementation. Sr2+ displayed behaviour similar to Ca2+ as observed by its ability to increase the rigidity of cheese and rennet milk gels and also decrease cheese meltability. Mg+2 had no influence on cheese rheological properties and was greatly inferior to Ca2+ and Sr2+ in its ability to increase rennet milk gel elasticity. Cheddar cheese was supplemented with the calcium-chelating salts trisodium citrate, disodium hydrogen phosphate or disodium EDTA, in an attempt to reduce the CCP content of cheese and thereby modify its rheological and functional properties. TSC and EDTA were successful in decreasing cheese CCP, whereas DSP caused an initial increase in CCP content. Cheddar cheese was supplemented with chlorides of iron, copper and zinc at salting to investigate the effects of concentrations of these elements in excess of those found innately or commonly in fortification studies, with emphasis on mineral equilibria changes and resultant alteration of rheological properties. Zinc addition was the only added metal that significantly influenced cheese rheological properties, leading to an increase in cheese rigidity and decreased cheese melt at elevated temperatures. Gum tragacanth was used as a fat-replacer in the manufacture of reduced-fat Cheddar cheese, in an attempt to improve the rheological, functional and sensory properties of reduced-fat Cheddar. Overall, the experimental work reported in this thesis generated new knowledge and theories about how casein-mineral interactions influence rheological properties of casein systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last two decades, semiconductor nanocrystals have been the focus of intense research due to their size dependant optical and electrical properties. Much is now known about how to control their size, shape, composition and surface chemistry, allowing fine control of their photophysical and electronic properties. However, genuine concerns have been raised regarding the heavy metal content of these materials, which is toxic even at relatively low concentrations and may limit their wide scale use. These concerns have driven the development of heavy metal free alternatives. In recent years, germanium nanocrystals (Ge NCs) have emerged as environmentally friendlier alternatives to II-VI and IV-VI semiconductor materials as they are nontoxic, biocompatible and electrochemically stable. This thesis reports the synthesis and characterisation of Ge NCs and their application as fluorescence probes for the detection of metal ions. A room-temperature method for the synthesis of size monodisperse Ge NCs within inverse micelles is reported, with well-defined core diameters that may be tuned from 3.5 to 4.5 nm. The Ge NCs are chemically passivated with amine ligands, minimising surface oxidation while rendering the NCs dispersible in a range of polar solvents. Regulation of the Ge NCs size is achieved by variation of the ammonium salts used to form the micelles. A maximum quantum yield of 20% is shown for the nanocrystals, and a transition from primarily blue to green emission is observed as the NC diameter increases from 3.5 to 4.5 nm. A polydisperse sample with a mixed emission profile is prepared and separated by centrifugation into individual sized NCs which each showed blue and green emission only, with total suppression of other emission colours. A new, efficient one step synthesis of Ge NCs with in situ passivation and straightforward purification steps is also reported. Ge NCs are formed by co-reduction of a mixture of GeCl4 and n-butyltrichlorogermane; the latter is used both as a capping ligand and a germanium source. The surface-bound layer of butyl chains both chemically passivates and stabilises the Ge NCs. Optical spectroscopy confirmed that these NCs are in the strong quantum confinement regime, with significant involvement of surface species in exciton recombination processes. The PL QY is determined to be 37 %, one of the highest values reported for organically terminated Ge NCs. A synthetic method is developed to produce size monodisperse Ge NCs with modified surface chemistries bearing carboxylic acid, acetate, amine and epoxy functional groups. The effect of these different surface terminations on the optical properties of the NCs is also studied. Comparison of the emission properties of these Ge NCs showed that the wavelength position of the PL maxima could be moved from the UV to the blue/green by choice of the appropriate surface group. We also report the application of water-soluble Ge NCs as a fluorescent sensing platform for the fast, highly selective and sensitive detection of Fe3+ ions. The luminescence quenching mechanism is confirmed by lifetime and absorbance spectroscopies, while the applicability of this assay for detection of Fe3+ in real water samples is investigated and found to satisfy the US Environmental Protection Agency requirements for Fe3+ levels in drinkable water supplies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of active pharmaceutical ingredients (APIs) are crystalline solids in their pure forms. Crystalline solids have definable morphologies, i.e. shape and size. Crystal morphology is determined by both the internal structure of the crystals and external factors during growth from solution. The morphology of a crystal batch can affect key processes during manufacturing. Companies generally accept whatever morphology the manufacturing process provides and deal with any subsequent problems by costly trouble‒shooting. Rational design of optimised morphologies for crystalline pharmaceutical solids would be a very significant technical and commercial advance. Chapter one introduces the concept of crystal nucleation and growth. The phenomenon of polymorphism alongside the causes and impact is discussed. A summary of the scope of instrumentation used in the investigation of crystal polymorphism and morphology, including crystal size distribution (CSD), is also included. Chapter two examines the research carried out during an exploration of the optimum crystallisation parameters of phenacetin. Following a morphological study, the impact this induces on particle density and flow properties is examined. The impact of impurities on the crystallisation properties of phenacetin is investigated. Significantly, the location of impurities within individual crystals is also studied. The third chapter describes an industrial collaboration looking at the resolution and polymorphic study of trometamol and lysine salts of ketoprofen and 2‒phenylpropionic acid (2‒PPA). Chapter four incorporates a solid state study on three separate compounds: 2‒chloro‒4‒nitroaniline, 4‒hydroxy‒N‒phenylbenzenesulfonamide and N‒acetyl‒D‒glucosamine‒6‒O‒sulfate. 2‒Chloro‒4‒nitroaniline and 4‒hydroxy‒N‒phenylbenzenesulfonamide both produced interesting, extreme morphologies which warranted further investigation as part of a collaborative study. Following a summarisation of results in chapter five, chapter six contains the full experimental details, incorporating spectral and other analytical data for all compounds synthesised during the course of the research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: L-arginine infusion improves endothelial function in malaria but its safety profile has not been described in detail. We assessed clinical symptoms, hemodynamic status and biochemical parameters before and after a single L-arginine infusion in adults with moderately severe malaria. METHODOLOGY AND FINDINGS: In an ascending dose study, adjunctive intravenous L-arginine hydrochloride was infused over 30 minutes in doses of 3 g, 6 g and 12 g to three separate groups of 10 adults hospitalized with moderately severe Plasmodium falciparum malaria in addition to standard quinine therapy. Symptoms, vital signs and selected biochemical measurements were assessed before, during, and for 24 hours after infusion. No new or worsening symptoms developed apart from mild discomfort at the intravenous cannula site in two patients. There was a dose-response relationship between increasing mg/kg dose and the maximum decrease in systolic (rho = 0.463; Spearman's, p = 0.02) and diastolic blood pressure (r = 0.42; Pearson's, p = 0.02), and with the maximum increment in blood potassium (r = 0.70, p<0.001) and maximum decrement in bicarbonate concentrations (r = 0.53, p = 0.003) and pH (r = 0.48, p = 0.007). At the highest dose (12 g), changes in blood pressure and electrolytes were not clinically significant, with a mean maximum decrease in mean arterial blood pressure of 6 mmHg (range: 0-11; p<0.001), mean maximal increase in potassium of 0.5 mmol/L (range 0.2-0.7 mmol/L; p<0.001), and mean maximal decrease in bicarbonate of 3 mEq/L (range 1-7; p<0.01) without a significant change in pH. There was no significant dose-response relationship with blood phosphate, lactate, anion gap and glucose concentrations. All patients had an uncomplicated clinical recovery. CONCLUSIONS/SIGNIFICANCE: Infusion of up to 12 g of intravenous L-arginine hydrochloride over 30 minutes is well tolerated in adults with moderately severe malaria, with no clinically important changes in hemodynamic or biochemical status. Trials of adjunctive L-arginine can be extended to phase 2 studies in severe malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT00147368.