972 resultados para HUMAN GINGIVAL FIBROBLASTS
Resumo:
A Tobacco mosaic virus (TMV)-derived vector was used to express a native Human papillomavirus type 16 (HPV-16) L1 gene in Nicotiana benthamiana by means of infectious in vitro RNA transcripts inoculated onto N. benthamiana plants. HPV-16 L1 protein expression was quantitated by enzyme-linked immunosorbent assays (ELISA) after concentration of the plant extract. We estimated that the L1 product yield was 20-37 μg/kg of fresh leaf material. The L1 protein in the concentrated extract was antigenically characterised using the neutralising and conformation-specific Mabs H16:V5 and H16:E70, which bound to the plant-produced protein. Particles observed by transmission electron microscopy were mainly capsomers but virus-like particles (VLPs) similar to those produced in other systems were also present. Immunisation of rabbits with the concentrated plant extract induced a weak immune response. This is the first report of the successful expression of an HPV L1 gene in plants using a plant virus vector. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) subtype C is the predominant HIV in southern Africa, and is the target of a number of recent vaccine candidates. It has been proposed that a heterologous prime/boost vaccination strategy may result in stronger, broader and more prolonged immune responses. Since HIV-1 Gag Pr55 polyprotein can assemble into virus-like particles (VLPs) which have been shown to induce a strong cellular immune response in animals, we showed that a typical southern African subtype C Pr55 protein expressed in insect cells via recombinant baculovirus could form VLPs. We then used the baculovirus-produced VLPs as a boost to a subtype C HIV-1 gag DNA prime vaccination in mice. This study shows that a low dose of HIV-1 subtype C Gag VLPs can significantly boost the immune response to a single subtype C gag DNA inoculation in mice. These results suggest a possible vaccination regimen for humans. © 2004 SGM.
Resumo:
Human papillomaviruses (HPVs) are obligate epithelial pathogens and typically cause localized mucosal infections. We therefore hypothesized that T-cell responses to HPV antigens would be greater at sites of pathology than in the blood. Focusing on HPV-16 because of its association with cervical cancer, the magnitude of HPV-specific T-cell responses at the cervix was compared with those in the peripheral blood by intracellular cytokine staining following direct ex vivo stimulation with both virus-like particles assembled from the major capsid protein L1, and the major HPV oncoprotein, E7. We show that both CD4 + and CD8 + T cells from the cervix responded to the HPV-16 antigens and that interferon-γ (IFN-γ) production was HPV type-specific. Comparing HPV-specific T-cell IFN-γ responses at the cervix with those in the blood, we found that while CD4 + and CD8 + T-cell responses to L1 were significantly correlated between compartments (P = 0.02 and P = 0.05, respectively), IFN-γ responses in both T-cell subsets were significantly greater in magnitude at the cervix than in peripheral blood (P = 0.02 and P = 0.003, respectively). In contrast, both CD4 + and CD8 + T-cell IFN-γ responses to E7 were of similar magnitude in both compartments and CD8 + responses were significantly correlated between these distinct immunological compartments (P = 0.04). We therefore show that inflammatory T-cell responses against L1 (but not E7) demonstrate clear compartmental bias and the magnitude of these responses do reflect local viral replication but that correlation of HPV-specific responses between compartments indicates their linkage.
Resumo:
As cervical cancer is causally associated with 14 high-risk types of human papillomavirus (HPV), a successful HPV vaccine will have a major impact on this disease. Although some persistent HPV infections progress to cervical cancer, host immunity is generally able to clear most HPV infections. Both cell-mediated and antibody responses have been implicated in influencing the susceptibility, persistence or clearance of genital HPV infection. There have been two clinical trials that show that vaccines based on virus-like particles (VLPs) made from the major capsid protein, L1, are able to type specifically protect against cervical intra-epithelial neoplasia and infection. However, there is no evidence that even a mixed VLP vaccine will protect against types not included in the vaccine, and a major challenge that remains is how to engineer protection across a broader spectrum of viruses. Strategies for production of HPV vaccines using different vaccine vectors and different production systems are also reviewed. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Recombinant human papillomavirus (HPV) virus-like particles (VLPs) made from the major capsid protein L1 are promising vaccine candidates for use as vaccines against genital and other HPV infections, and particularly against HPV-16. However, HPV-16 genotype variants have different binding affinities for neutralising mouse Mabs raised against HPV-16 L1 VLPs. This paper analyses, using a panel of well-characterised Mabs, the effects on the antigenicity of various C- and N-terminal deletants of HPV-16 L1 made in insect cells via recombinant baculovirus, of an A → T mutation at residue 266 (A266T), and of a C → G mutation at conserved position 428 (C428G). The effects of these changes on assembly of the variant L1s were studied by electron microscopy. Binding of Mab H16:E70 to A266T was reduced by almost half in comparison to wild type L1. Retention of the C-terminal region 428-483 was critical for the binding of conformation-specific Mabs (H16:V5, H16:E70, H16:U4 and H16:9A) whereas deletion of the nuclear localisation signal (NLS) or the C428G mutation or an N-terminal deletion (residues 2-9) did not affect the antigenicity. The N-terminal deletion resulted in a mixed population of 30 and 55 nm VLPs, which differs from the same construct expressed in Escherichia coli, whereas pentamer aggregates resulted from deletion of the 428-465 region or the C428G mutation. The results have implications both for considering use of single-genotype HPV vaccines, and for design of novel second-generation vaccines. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Human papillomaviruses are the etiological agents of cervical cancer, one of the two most prevalent cancers in women in developing countries. Currently available prophylactic vaccines are based on the L1 major capsid protein, which forms virus-like particles when expressed in yeast and insect cell lines. Despite their recognized efficacy, there are significant shortcomings: the vaccines are expensive, include only two oncogenic virus types, are delivered via intramuscular injection and require a cold chain. Plant expression systems may provide ways of overcoming some of these problems, in particular the expense. In this article, we report recent promising advances in the production of prophylactic and therapeutic vaccines against human papillomavirus by expression of the relevant antigens in plants, and discuss future prospects for the use of such vaccines. © 2010 Expert Reviews Ltd.
Resumo:
Background Cervical cancer and infection with human immunodeficiency virus (HIV) are both important public health problems in South Africa (SA). The aim of this study was to determine the prevalence of cervical squamous intraepithelial lesions (SILs), high-risk human papillomavirus (HR-HPV), HPV viral load and HPV genotypes in HIV positive women initiating anti-retroviral (ARV) therapy. Methods A cross-sectional survey was conducted at an anti-retroviral (ARV) treatment clinic in Cape Town, SA in 2007. Cervical specimens were taken for cytological analysis and HPV testing. The Digene Hybrid Capture 2 (HC2) test was used to detect HR-HPV. Relative light units (RLU) were used as a measure of HPV viral load. HPV types were determined using the Roche Linear Array HPV Genotyping test. Crude associations with abnormal cytology were tested and multiple logistic regression was used to determine independent risk factors for abnormal cytology. Results The median age of the 109 participants was 31 years, the median CD4 count was 125/mm3, 66.3% had an abnormal Pap smear, the HR-HPV prevalence was 78.9% (Digene), the median HPV viral load was 181.1 RLU (HC2 positive samples only) and 78.4% had multiple genotypes. Among women with abnormal smears the most prevalent HR-HPV types were HPV types 16, 58 and 51, all with a prevalence of 28.5%. On univariate analysis HR-HPV, multiple HPV types and HPV viral load were significantly associated with the presence of low and high-grade SILs (LSIL/HSIL). The multivariate logistic regression showed that HPV viral load was associated with an increased odds of LSIL/HSIL, odds ratio of 10.7 (95% CI 2.0 – 57.7) for those that were HC2 positive and had a viral load of ≤ 181.1 RLU (the median HPV viral load), and 33.8 (95% CI 6.4 – 178.9) for those that were HC2 positive with a HPV viral load > 181.1 RLU. Conclusion Women initiating ARVs have a high prevalence of abnormal Pap smears and HR-HPV. Our results underscore the need for locally relevant, rigorous screening protocols for the increasing numbers of women accessing ARV therapy so that the benefits of ARVs are not partially offset by an excess risk in cervical cancer.
Resumo:
Development of vaccine strategies against human papillomavirus (HPV), which causes cervical cancer, is a priority. We investigated the use of virus-like particles (VLPs) of the most prevalent type, HPV-16, as carriers of foreign proteins. Green fluorescent protein (GFP) was fused to the N or C terminus of both L1 and L2, with L2 chimeras being co-expressed with native L1. Purified chimaeric VLPs were comparable in size (∼55 nm) to native HPV VLPs. Conformation-specific monoclonal antibodies (Mabs) bound to the VLPs, thereby indicating that they possibly retain their antigenicity. In addition, all of the VLPs encapsidated DNA in the range of 6-8 kb. © 2007 Springer-Verlag.
Resumo:
Recent research indicates that brief periods (60 minutes) of monocular defocus lead to small but significant changes in human axial length. However, the effects of longer periods of defocus on the axial length of human eyes are unknown. We examined the influence of a 12 hour period of monocular myopic defocus on the natural daily variations occurring in axial length and choroidal thickness of young adult emmetropes. A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained for 13 emmetropic young adults over three consecutive days. The natural daily rhythms (Day 1, baseline day, no defocus), the daily rhythms with monocular myopic defocus (Day 2, defocus day, +1.50 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, recovery day, no defocus) were all examined. Significant variations over the course of the day were observed in both axial length and choroidal thickness on each of the three measurement days (p<0.0001). The magnitude and timing of the daily variations in axial length and choroidal thickness were significantly altered with the monocular myopic defocus on day 2 (p<0.0001). Following the introduction of monocular myopic defocus, the daily peak in axial length occurred approximately 6 hours later, and the peak in choroidal thickness approximately 8.5 hours earlier in the day compared to days 1 and 3 (with no defocus). The mean amplitude (peak to trough) of change in axial length (0.030 ± 0.012 on day 1, 0.020 ± 0.010 on day 2 and 0.033 ± 0.012 mm on day 3) and choroidal thickness (0.030 ± 0.007 on day 1, 0.022 ± 0.006 on day 2 and 0.027 ± 0.009 mm on day 3) were also significantly different between the three days (both p<0.05). The introduction of monocular myopic defocus disrupts the daily variations in axial length and choroidal thickness of human eyes (in terms of both amplitude and timing) that return to normal the following day after removal of the defocus.
Resumo:
The role of individual ocular tissues in mediating changes to the sclera during myopia development is unclear. The aim of this study was to examine the effects of retina, RPE and choroidal tissues from myopic and hyperopic chick eyes on the DNA and glycosaminoglycan (GAG) content in cultures of chick scleral fibroblasts. Primary cultures of fibroblastic cells expressing vimentin and -smooth muscle actin were established in serum-supplemented growth medium from 8-day-old normal chick sclera. The fibroblasts were subsequently co-cultured with posterior eye cup tissue (full thickness containing retina, RPE and choroid) obtained from untreated eyes and eyes wearing translucent diffusers (form-deprivation myopia, FDM) or -15D lenses (lens-induced myopia, LIM) for 3 days (post hatch day 5 to 8) (n=6 per treatment group). The effect of tissues (full thickness and individual retina, RPE, and choroid layers) from -15D (LIM) versus +15D (lens-induced hyperopia, LIH) treated eyes was also determined. Refraction changes in the direction predicted by the visual treatments were confirmed by retinoscopy prior to tissue collection. Glycosaminoglycan (GAG) and DNA content of the scleral fibroblast cultures were measured using GAG and PicoGreen assays. There was no significant difference in the effect of full thickness tissue from either FDM or LIM treated eyes on DNA and GAG content of scleral fibroblasts (DNA 8.9±2.6 µg and 8.4±1.1 µg, p=0.12; GAG 11.2±0.6 µg and 10.1±1.0 µg, p=0.34). Retina from LIM eyes did not alter fibroblast DNA or GAG content compared to retina from LIH eyes (DNA 27.2±1.7 µg versus 23.2±1.5 µg, p=0.21; GAG 28.1±1.7 µg versus. 28.7±1.2 µg, p=0.46). Similarly, the choroid from LIH and LIM eyes did not produce a differential effect on DNA content (DNA, LIM 46.9±6.4 versus LIH 51.5±4.7 µg, p=0.31), whereas GAG content was higher for cells in co-culture with choroid from LIH eyes (GAG 32.5±0.7 µg versus 18.9±1.2 µg, F1,6=9.210, p=0.0002). In contrast, fibroblast DNA was greater in co-culture with RPE from LIM eyes than the empty basket and DNA content less for co-culture with RPE from LIH eyes (LIM: 72.4±6.3 µg versus Empty basket: 46.03±1.0 µg; F1,6=69.99, p=0.0005 and LIH: 27.9±2.3 µg versus empty basket: 46.03±1.0 µg; p=0.0004). GAG content was higher with RPE from LIH eyes (LIH: 33.7±1.9 µg versus empty basket: 29.5±0.8 µg, F1,6=13.99, p=0.010) and lower with RPE from LIM eyes (LIM: 27.7±0.9 µg versus empty basket: 29.5±0.8 µg, p=0.021). GAG content of cells in co-culture with choroid from LIH eyes was higher compared to co-culture with choroid from LIM eyes (32.5±0.7 µg versus 18.9±1.2 µg respectively, F1,6=9.210, p=0.0002). In conclusion, these experiments provide evidence for a directional growth signal that is present (and remains) in the ex-vivo RPE, but that does not remain in the ex-vivo retina. The identity of this factor(s) that can modify scleral cell DNA and GAG content requires further research.
Resumo:
Indicators of mitochondrial function were studied in two different cell culture models of cis-diamminedichloroplatinum-II (CDDP) resistance: the intrinsically resistant human ovarian cancer cell line CI-80-13S, and resistant clones (HeLa-S1a and HeLa-S1b) generated by stable expression of the serine protease inhibitor—plasminogen activator inhibitor type-2 (PAI-2), in the human cervical cancer cell line HeLa. In both models, CDDP resistance was associated with sensitivity to killing by adriamycin, etoposide, auranofin, bis[1,2-bis(diphenylphosphino)ethane]gold(I) chloride {[Au(DPPE)2]Cl}, CdCl2 and the mitochondrial inhibitors rhodamine-123 (Rhl23), dequalinium chloride (DeCH), tetraphenylphosphonium (TPP), and ethidium bromide (EtBr) and with lower constitutive levels of ATP. Unlike the HeLa clones, CI-80-13S cells were additionally sensitive to chloramphenicol, 1-methyl-4-phenylpyridinium ion (MPP+), rotenone, thenoyltrifluoroacetone (TTFA), and antimycin A, and showed poor reduction of 1-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), suggesting a deficiency in NADH dehydrogenase and/or succinate dehydrogenase activities. Total platinum uptake and DNA-bound platinum were slightly lower in CI-80-13S than in sensitive cells. The HeLa-S1a and HeLa-S1b clones, on the other hand, showed poor reduction of triphenyltetrazolium chloride (TTC), indicative of low cytochrome c oxidase activity. Total platinum uptake by HeLa-S1a was similar to HeLa, but DNA-bound platinum was much lower than for the parent cell line. The mitochondria of CI-80-13S and HeLa-S1a showed altered morphology and were fewer in number than those of JAM and HeLa. In both models, CDDP resistance was associated with less platinum accumulation and with mitochondrial and membrane defects, brought about one case with expression of a protease inhibitor which is implicated in tumor progression. Such markers may identify tumors suitable for treatment with gold phosphine complexes or other mitochondrial inhibitors.
Resumo:
Female genital mutilation (FGM) is a cultural practice involving the deliberate, non-therapeutic physical modification of young girls’ genitalia. FGM can take several forms, ranging from smaller incisions, to removal of the clitoris and labia, and narrowing or even closing of the vagina. FGM predates and has no basis in the Koran, or any other religious text. Rather, it is a cultural tradition, particularly common in Islamic societies in regions of Africa, motivated by a patriarchal society’s desire to control female bodies and lives. The primary reason for this desire for control is to ensure virginity at marriage, thereby preserving family honour, within a patriarchal social structure where females’ value as persons is intrinsically connected to, and limited to, their worth as virgin brides. Recent efforts at legal prohibition and practical eradication in a growing number of African nations mark a significant turning point in how societies treat females. This shift in cultural power has been catalysed by a concern for female health, but it has also been motivated by an impulse to promote the human rights of girls and women. Although FGM remains widely practiced and there is much progress yet to be made before its eradication, the rights-based approach which has grown in strength embodies a marked shift in cultural power which reflects progress in women’s and children’s rights in the Western world, but which is now being applied in a different cultural context. This chapter reviews the nature of FGM, its prevalence, and health consequences. It discusses recent legal, cultural and practical developments, especially in African nations. Finally, this chapter raises the possibility that an absolute human right against FGM may emerge.
Resumo:
The literature was reviewed to assess the relationship between the lipid adjusted concentration in human serum and breast milk (expressed as the serum/milk ratio) of a broad range of POPs in paired samples. Thirteen studies were identified, including seven studies that reported serum/milk ratios for polychlorinated dibenzo-dioxins and -furans (PCDD/Fs), ten for polychlorinated biphenyls (PCBs), five for polybrominated diphenyl ethers (PBDEs), and five for organochlorine pesticides (OCPs). Mean serum/milk ratios ranged between 0.7 and 25 depending on the compound and congener. For PCDD/Fs, PCBs and PBDEs, a clear trend of increasing mean serum/milk ratio by increasing molar volume, hydrophobicity and number of halogen substitutes was observed. The mean serum/milk ratios reported by the 13 studies summarized here will aid comparison between human POPs exposure studies using either serum or milk samples. More studies are needed to allow a valid comparison between data obtained from analysis of breast milk and serum samples for a broader range of POPs. Furthermore such studies may shed light on compound specific factors as well as other determinants that may affect the partitioning and partition kinetics of POPs between serum and breast milk.
Resumo:
Articular cartilage defects are common after joint injuries. When left untreated, the biomechanical protective function of cartilage is gradually lost, making the joint more susceptible to further damage, causing progressive loss of joint function and eventually osteoarthritis (OA). In the process of translating promising tissue-engineering cartilage repair approaches from bench to bedside, pre-clinical animal models including mice, rabbits, goats, and horses, are widely used. The equine species is becoming an increasingly popular model for the in vivo evaluation of regenerative orthopaedic approaches. As there is also an increasing body of evidence suggesting that successful lasting tissue reconstruction requires an implant that mimics natural tissue organization, it is imperative that depth-dependent characteristics of equine osteochondral tissue are known, to assess to what extent they resemble those in humans. Therefore, osteochondral cores (4-8 mm) were obtained from the medial and lateral femoral condyles of equine and human donors. Cores were processed for histology and for biochemical quantification of DNA, glycosaminoglycan (GAG) and collagen content. Equine and human osteochondral tissues possess similar geometrical (thickness) and organizational (GAG, collagen and DNA distribution with depth) features. These comparable trends further underscore the validity of the equine model for the evaluation of regenerative approaches for articular cartilage.