932 resultados para HDE BOP
Resumo:
OBJECTIVE: (I) To compare the oral microflora at implant and tooth sites in subjects participating in a periodontal recall program, (II) to test whether the microflora at implant and tooth sites differ as an effect of gingival bleeding (bleeding on probing (BOP)), or pocket probing depth (PPD), and (III) to test whether smoking and gender had an impact on the microflora. MATERIAL AND METHODS: Data were collected from 127 implants and all teeth in 56 subjects. Microbiological data were identified by the DNA-DNA checkerboard hybridization. RESULTS: PPD> or =4 mm were found in 16.9% of tooth, and at 26.6% of implant sites (P<0.01). Tooth sites with PPD> or =4 mm had a 3.1-fold higher bacterial load than implant sites (mean difference: 66%, 95% confidence interval (CI): 40.7-91.3, P<0.001). No differences were found for the red, orange, green, and yellow complexes. A higher total bacterial load was found at implant sites with PPD> or =4 mm (mean difference 35.7 x 10(5), 95% CI: 5.2 (10(5)) to 66.1 (10(5)), P<0.02 with equal variance not assumed). At implant sites, BOP had no impact on bacterial load but influenced the load at tooth sites (P<0.01). CONCLUSION: BOP, and smoking had no impact on bacteria at implant sites but influenced the bacterial load at tooth sites. Tooth sites harbored more bacteria than implant sites with comparable PPD. The 4 mm PPD cutoff level influenced the distribution and amounts of bacterial loads. The subject factor is explanatory to bacterial load at both tooth and implant sites.
Resumo:
AIM: To monitor over 12 months clinical and radiographic changes occurring after adjunctive local delivery of minocycline microspheres for the treatment of peri-implantitis. MATERIAL AND METHODS: In 25 partially edentulous subjects, 31 implants diagnosed with peri-implantitis were treated. Three weeks after oral hygiene instruction, mechanical debridement and local antiseptic cleansing using 0.2% chlorhexidine gel, baseline (Day 0) parameters were recorded. Minocycline microspheres (Arestin) were locally delivered to each implant site with bone loss and a probing pocket depth (PPD) >or=5 mm. Rescue therapy with Arestin was allowed at Days 180 and 270 at any site exhibiting an increase in PPD>or=2 mm from the previous visit. The following clinical parameters were recorded at four sites/implant at Day 0, 10, 30, 60, 90, 180, 270 and 360: PPD, clinical attachment level (CAL), bleeding on probing (BOP) and plaque index (PlI). RESULTS: Six implants in six subjects were either rescued or exited because of persisting active peri-implantitis. Successful implants showed a statistically significant reduction in both PPD and percentage of sites with BOP between baseline and Day 360 (P<0.05). At mesial implant sites, the mean PPD reduction amounted to 1.6 mm (95% CI: 0.9-2.2 mm, P<0.001) and was accompanied by a statistically significant reduction of the BOP value (P<0.001). Binary regression analysis showed that the clinical parameters and smoking history could not discriminate between successfully treated and rescued or exited implants at any observation time point. CONCLUSION: Non-surgical mechanical treatment of peri-implantitis lesions with adjunctive local delivery of microencapsulated minocycline led to positive effects on clinical parameters up to 12 months.
Resumo:
AIM: To compare the periodontal conditions of Swiss Army recruits in 2006 with those of previous surveys in 1996 and 1985. MATERIAL AND METHODS: A total of six hundred and twenty-six Swiss Army recruits were examined for their periodontal conditions, caries prevalence, stomatological and functional aspects of the masticatory system and halitosis. In particular, this report deals with demographic data, the assessment of plaque index (PlI), gingival index (GI) and pocket probing depth (PPD). RESULTS: Two per cent of all teeth were missing, resulting in a mean of 27.44 teeth per subject, and 77% of the missing teeth were the result of pre-molar extractions due to orthodontic indications. The mean PlI and GI were 1.33 and 1.23, respectively. On average, 27% of the gingival units bled on probing. The mean PPD was 2.16 mm (SD 0.64). Only 3.8% of the recruits showed at least one site of PPD > or = 5 mm, and 1.4% yielded more than one site with PPD > or = 5 mm. In comparison with previous, this survey yielded lower bleeding on probing (BOP) percentages than in 1985, but slightly higher scores than in 1996. This may be attributed to increased PlI scores in 2006. However, PPD remained essentially unaltered from 1996 to 2006 after having improved significantly from 1985. CONCLUSION: A significant improvement of the periodontal conditions of young Swiss males was demonstrated to have taken place between 1985 and 1996, but no further changes during the last decade were noticed.
Resumo:
BACKGROUND: Limited evidence exists on the significance of residual probing pocket depth (PPD) as a predictive parameter for periodontal disease progression and tooth loss. AIM: The aim of this study was to investigate the influence of residual PPD >or=5 mm and bleeding on probing (BOP) after active periodontal therapy (APT) on the progression of periodontitis and tooth loss. MATERIAL AND METHODS: In this retrospective cohort, 172 patients were examined after APT and supportive periodontal therapy (SPT) for 3-27 years (mean 11.3 years). Analyses were conducted using information at site, tooth and patient levels. The association of risk factors with tooth loss and progression of periodontitis was investigated using multilevel logistic regression analysis. RESULTS: The number of residual PPD increased during SPT. Compared with PPD
Resumo:
OBJECTIVES: To assess the clinical and microbiological effects of full-mouth debridement with (FMD) and without the use of antiseptics [full-mouth scaling and root planing (FMSRP)] in comparison with conventional staged debridement (CSD) in patients with chronic periodontitis after at least 6 months. MATERIAL AND METHODS: The search in MEDLINE (PubMed), covering a period of 1975 to October 2007, and hand searching yielded 207 titles. Forty-two abstracts and 17 full-text articles were screened for inclusion. RESULTS: Twelve articles allowed a direct comparison of FMD with CSD, FMSRP with CSD and FMD with FMSRP. Probing pocket depth reductions were significantly greater (0.2 mm) with FMD and FMSRP compared with CSD. Moreover, a modest reduction in BOP (9%) favoured FMD. Likewise, clinical attachment levels were improved by 0.2-0.4 mm in favour of FMD and FMSRP, respectively. In all comparisons, single-rooted teeth and deep pockets benefitted slightly from FMD and FMSRP. Limited differences in the changes of the subgingival microbiota were noted between the treatment modalities. CONCLUSIONS: Despite the significant differences of modest magnitude, FMD or FMSRP do not provide clinically relevant advantages over CSD. Hence, all three treatment modalities may be recommended for debridement in the initial treatment of patients with chronic periodontitis.
Resumo:
BACKGROUND: Information on the subgingival microbiota in parous women is limited. The present study assessed 74 bacterial species at periodontal sites. METHODS: Subgingival bacterial plaque was collected from women > or =6 months after delivery. Bacteria were assessed by the checkerboard DNA-DNA hybridization method. Gingivitis was defined as > or =20% of sites with bleeding on probing (BOP), and periodontitis was defined as radiographic evidence of bone loss and probing depths > or =5.0 mm. RESULTS: A total of 197 women (mean age: 29.4 +/- 6.8 years; range: 18 to 46 years) were included in the study. Gingivitis was identified in 82 of 138 subjects without evidence of periodontitis (59.4%). Periodontitis was found in 59 women (32%). Higher bacterial levels in subjects with gingivitis compared to those without evidence of gingivitis were observed for Actinomyces neuii, Bifidobacterium bifidum, Corynebacterium pseudogenitalis, Porphyromonas endodontalis, Prevotella bivia, and Pseudomonas aeruginosa (P <0.001 for each). Higher bacterial levels in subjects with periodontitis compared to those without periodontitis (BOP not accounted for) were found for 32 of 79 species (P <0.001) including Lactobacillus iners, Haemophilus influenzae, Porphyromonas gingivalis, Tannerella forsythia (previously T. forsythensis), Prevotella bivia, P. aeruginosa, and Staphylococcus aureus. Binary univariate logistic regression analysis identified that P. aeruginosa (P <0.001) and T. forsythia (P <0.05) were independently predictive of periodontal status. The odds ratio of having P. aeruginosa at levels > or =1 x 10(5) in the sample and periodontitis was 3.1 (95% confidence interval: 1.6 to 5.9; P <0.001). CONCLUSION: In addition to P. gingivalis and T. forsythia, a diverse microbiota, including P. aeruginosa, P. endodontalis, P. bivia, and S. aureus, can be found in subgingival plaque samples from women of child-bearing age with periodontitis.
Resumo:
AIMS: To assess rates of periodontal disease progression in subjects with cleft lip, alveolus and palate (CLAP) over a 25-year period without regular maintenance care in a specialist setting and to compare those with those of subjects without alveolar clefts, i.e. cleft lip (CL) or cleft palate (CP). MATERIAL AND METHODS: Ten subjects with CLAP and 10 subjects with CL/CP were examined in 1979, 1987, 1993 and 2004. Probing pocket depth (PPD), clinical attachment level (CAL), bleeding on probing (BoP) and plaque control record (PCR) scores were recorded in all 20 subjects. RESULTS: High plaque and BoP scores were recorded at all examinations in both groups. Over 25 years, a statistically significant loss of mean full-mouth CAL of 1.52 +/- 0.12 mm (SD) and 1.66 +/- 0.15 mm occurred in the CLAP and CL/CP group respectively (p<0.05). A statistically significant increase (p<0.05) in mean full-mouth PPD of 0.35 +/- 0.12 mm was observed in the CL/CP group, whereas only a trend for a mean full-mouth increase in PPD of 0.09 +/- 0.11 mm was observed in the CLAP group. In subjects with CLAP, a statistically significant increase (p<0.05) in PPD of 0.92 +/- 1.13 mm at cleft sites was observed compared with that of 0.17 +/- 0.76 mm at control sites. With respect to CAL, the loss at the corresponding sites amounted to 2.71 +/- 1.46 and to 2.27 +/- 1.62 mm, respectively (p=0.36). CONCLUSIONS: When stringent and well-defined supportive periodontal therapy was not provided, subjects with orofacial clefts were at high risk for periodontal disease progression. Over 25 years, alveolar cleft sites tended to have more periodontal tissue destruction compared with control sites.
Resumo:
BACKGROUND: We investigated clinical and subgingival microbiologic changes during pregnancy in 20 consecutive pregnant women > or =18 years not receiving dental care. METHODS: Bacterial samples from weeks 12, 28, and 36 of pregnancy and at 4 to 6 weeks postpartum were processed for 37 species by checkerboard DNA-DNA hybridization. Clinical periodontal data were collected at week 12 and at 4 to 6 weeks postpartum, and bleeding on probing (BOP) was recorded at sites sampled at the four time points. RESULTS: The mean BOP at week 12 and postpartum was 40.1% +/- 18.2% and 27.4% +/- 12.5%, respectively. The corresponding mean BOP at microbiologic test sites was 15% (week 12) and 21% (postpartum; not statistically significant). Total bacterial counts decreased between week 12 and postpartum (P <0.01). Increased bacterial counts over time were found for Neisseria mucosa (P <0.001). Lower counts (P <0.001) were found for Capnocytophaga ochracea, Capnocytophaga sputigena, Eubacterium saburreum, Fusobacterium nucleatum naviforme, Fusobacterium nucleatum polymorphum, Leptotrichia buccalis, Parvimonas micra (previously Peptostreptococcus micros or Micromonas micros), Prevotella intermedia, Prevotella melaninogenica, Staphylococcus aureus, Streptococcus anginosus, Streptococcus intermedius, Streptococcus mutans, Streptococcus oralis, Streptococcus sanguinis, Selenomonas noxia, and Veillonella parvula. No changes occurred between weeks 12 and 28 of pregnancy. Counts of Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans), Porphyromonas gingivalis, Tannerella forsythia (previously T. forsythensis), and Treponema denticola did not change. Counts of P. gingivalis and T. forsythia at week 12 were associated with gingivitis (P <0.001). CONCLUSIONS: Subgingival levels of bacteria associated with periodontitis did not change. P. gingivalis and T. forsythia counts were associated with BOP at week 12. A decrease was found in 17 of 37 species from week 12 to postpartum. Only counts of N. mucosa increased.
Resumo:
BACKGROUND: The objective of this study was to assess the oral microbiota and clinical data in subjects without access to traditional oral hygiene methods and who ate a diet available in the Stone Age. METHODS: Ten subjects living in an environment replicating the Stone Age for 4 weeks were enrolled in this study. Bleeding on probing (BOP), gingival and plaque indices, and probing depth (PD) were assessed at baseline and at 4 weeks. Microbiologic samples were collected at the mesio-buccal subgingival aspects of all teeth and from the dorsum of the tongue and were processed by checkerboard DNA-DNA hybridization methods. RESULTS: No subject had periodontitis. Mean BOP decreased from 34.8% to 12.6% (P <0.001). Mean gingival index scores changed from 0.38 to 0.43 (not statistically significant) and mean plaque scores increased from 0.68 to 1.47 (P <0.001). PD at sites of subgingival sampling decreased (mean difference: 0.2 mm; P <0.001). At week 4, the total bacterial count was higher (P <0.001) for 24 of 74 species, including Bacteroides ureolyticus, Eikenella corrodens, Lactobacillus acidophilus, Capnocytophaga ochracea, Escherichia coli, Fusobacterium nucleatum naviforme, Haemophilus influenzae, Helicobacter pylori, Porphyromonas endodontalis, Staphylococcus aureus (two strains), Streptococcus agalactiae, Streptococcus anginosis, and Streptococcus mitis. Bacterial counts from tongue samples were higher at baseline (P <0.001) for 20 species, including Tannerella forsythia (previously T. forsythensis), Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans; serotype a), and Streptococcus spp. CONCLUSIONS: The experimental gingivitis protocol is not applicable if the diet (e.g., Stone Age) does not include refined sugars. Although plaque levels increased, BOP and PD decreased. Subgingival bacterial counts increased for several species not linked to periodontitis, whereas tongue bacterial samples decreased during the study period.
Resumo:
BACKGROUND: Periodontal therapy using the combination of platelet-rich plasma (PRP) and different grafting materials has been suggested as a modality to enhance the outcome of regenerative surgery. In most clinical studies, a barrier membrane was used to cover the defects, and thus, the effects of PRP may have been masked by the effects of the barrier. The data from controlled clinical studies evaluating the effect of regenerative therapy using various grafting materials with or without PRP are still limited. The purpose of this study was to clinically compare the healing of intrabony defects treated with either a combination of an anorganic bovine bone mineral (ABBM) and PRP to those obtained with ABBM alone. METHODS: Thirty patients with advanced chronic periodontal disease and displaying one intrabony defect were randomly treated with PRP + ABBM or ABBM alone. The following clinical parameters were evaluated at baseline and 1 year after treatment: plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing depth (PD), gingival recession (GR), and clinical attachment level (CAL). The primary outcome variable was CAL. RESULTS: No statistical significant differences in any of the investigated parameters between the two groups were observed at baseline. Healing was uneventful in all patients. In the PRP + ABBM group, mean PD decreased from 8.6 +/- 1.8 mm to 3.4 +/- 1.4 mm (P <0.001) and mean CAL changed from 9.9 +/- 1.7 mm to 5.3 +/- 1.8 mm (P <0.001). In the ABBM group, mean PD decreased from 8.5 +/- 2.0 mm to 3.2 +/- 1.3 mm (P <0.001) and mean CAL changed from 9.6 +/- 1.9 mm to 4.9 +/- 1.5 mm (P <0.001). CAL gains >or=3 mm were measured in 80% (12 of 15 defects) of cases treated with PRP + ABBM and in 87% (13 of 15 defects) of cases treated with ABBM alone. No statistically significant differences in any of the investigated parameters were observed between the two groups at the 1-year reevaluation. CONCLUSIONS: Within the limits of the present study, it can be concluded that 1) at 1 year after regenerative surgery with PRP + ABBM and ABBM alone, significant PD reductions and CAL gains were found, and 2) the use of PRP failed to improve the results obtained with ABBM alone.
Resumo:
BACKGROUND: Single photodynamic therapy (PDT) has been effective in initial periodontal therapy, but only improved bleeding on probing (BoP) in maintenance patients after a single use. Repeated PDT has not been addressed. OBJECTIVES: To study the possible added benefits of repeated adjunctive PDT to conventional treatment of residual pockets in patients enrolled in periodontal maintenance. MATERIAL AND METHODS: Ten maintenance patients with 70 residual pockets [probing pocket depth (PPD)>or=5 mm] were randomly assigned for treatment five times in 2 weeks (Days 0, 1, 2, 7, 14) with PDT (test) or non-activated laser (control) following debridement. The primary outcome variable was PPD, and the secondary variables were clinical attachment level (CAL) and BoP. These were assessed at 3, 6 and 12 months following the interventions. RESULTS: Greater PPD reductions were observed in the test (-0.67 +/- 0.34; p=0.01) compared with the control patients (-0.04 +/- 0.33; NS) after 6 months. Significant CAL gain (+0.52 +/- 0.31; p=0.01) was noted for the test, but not in the control (-0.27 +/- 0.52; NS) patients after 6 months. BoP percentages decreased significantly in test (97-64%, 67%, 77%), but not control patients after 3, 6 and 12 months. CONCLUSIONS: Repeated (five times) PDT adjunctive to debridement yielded improved clinical outcomes in residual pockets in maintenance patients. The effects were best documented after 6 months.
Resumo:
OBJECTIVES: To assess the bleeding on probing (BOP) tendency and periodontal probe penetration when applying various probing forces at implant sites in patients with a high standard of oral hygiene with well-maintained peri-implant tissues. MATERIAL AND METHODS: Seventeen healthy patients with excellent oral hygiene in a maintenance program after having been treated for periodontitis or gingivitis were recruited. Missing teeth had been replaced using oral implants. The BOP and probing depth (PPD) were assessed at the mid-buccal, mid-oral, mesial and distal aspects of the buccal surfaces of each implant. Moreover, contralateral teeth were designated and assessed for BOP and PPD in the same locations and at the same observation visits. At each visit, implants and contralateral teeth were randomly assigned to one of the standardized probing forces (0.15 or 0.25 N). The second probing force was applied at the repetition of the examination 7 days later. RESULTS: Increasing the probing pressure by 0.1 N from 0.15 N resulted in an increase of BOP percentage by 13.7% and 6.6% for implants and contralateral teeth, respectively. There appeared to be a significant difference of the mean BOP percentage at implant and tooth sites when a probing pressure of 0.25 N was applied. A significantly deeper mean PPD at implant sites compared with tooth sites was found irrespective of the probing pressure applied. CONCLUSIONS: The results of the present study demonstrated that 0.15 N might represent the threshold pressure to be applied to avoid false positive BOP readings around oral implants. Hence, probing around implants demonstrated a higher sensitivity compared with probing around teeth.
Resumo:
OBJECTIVES The aim of this prospective, randomized, controlled clinical study was to compare the clinical outcomes of the subgingival treatment with erythritol powder by means of an air-polishing (EPAP) device and of scaling and root planing (SRP) during supportive periodontal therapy (SPT). METHOD AND MATERIALS 40 patients enrolled in SPT were randomly assigned to two groups of equal size. Sites had to show signs of inflammation (bleeding on probing [BOP]-positive) and a probing pocket depth (PPD) of ≥ 4 mm, however, without presence of detectable subgingival calculus. During SPT, these sites were treated with EPAP or SRP, respectively. Full mouth and site-specific plaque indices, BOP, PPD, and clinical attachment level (CAL) were recorded at baseline (BL) and at 3 months, whereas the percentage of study sites positive for BOP (BOP+) was considered as primary outcome variable. Additionally, patient comfort using a visual analog scale (VAS) and the time needed to treat per site was evaluated. RESULTS At 3 months, mean BOP level measured 45.1% at test sites and 50.6% at control sites, respectively, without a statistically significant difference between the groups (P > .05). PPD and CAL slightly improved for both groups with comparable mean values at 3 months. Evaluation of patient tolerance showed statistically significantly better values among patients receiving the test treatment (mean VAS [0-10], 1.51) compared to SRP (mean VAS [0-10], 3.66; P = .0012). The treatment of test sites was set to 5 seconds per site. The treatment of control sites, on the other hand, lasted 85 seconds on average. CONCLUSION The new erythritol powder applied with an air-polishing device can be considered a promising modality for repeated instrumentation of residual pockets during SPT. CLINICAL RELEVANCE With regard to clinical outcomes during SPT, similar results can be expected irrespective of the two treatment approaches of hand instrumentation or subgingival application of erythritol powder with an air-polishing device in sites where only biofilm removal is required.
Resumo:
The aim of this randomized, controlled clinical study was to compare the short-term effects of nonsurgical periodontal therapy with the additional administration of systemic antibiotics (AB) and the same therapy with additional photodynamic therapy (PDT) in the treatment of patients with aggressive periodontitis (AP). Thirty-six patients with AP received full-mouth nonsurgical periodontal treatment (SRP) and were then randomly divided into two groups of 18 subjects each. Group AB received amoxicillin and metronidazole three times a day for 7 days. Group PDT received two applications of PDT on the day of SRP as well as at follow-up after 7 days. The following clinical parameters were measured at baseline and 3 months after therapy: plaque index (PLI), bleeding on probing (BOP), probing depth (PD), gingival recession (GR), and clinical attachment level (CAL). After 3 months, PD was significantly reduced in both groups (from 5.0±0.8 mm to 3.2±0.4 mm with AB, and 5.1±0.5 mm to 4.0±0.8 mm with PDT; both p<0.001), while AB revealed significantly lower values compared to PDT (p = 0.001). In both groups, GR was not significantly changed. CAL was significantly reduced in both groups (PDT: 5.7±0.8 mm to 4.7±1.1 mm; p=0.011; AB: 5.5±1.1 mm to 3.9±1.0 mm; p<0.001) and differed significantly between the groups (p=0.025). The number of residual pockets (PD ≥4 mm) and positive BOP was reduced by AB from 961 to 377, and by PDT from 628 to 394. Pockets with PD ≥7 mm were reduced by AB from 141 to 7, and by PDT from 137 to 61. After 3 months, both treatments led to statistically significant clinical improvements. The systemic administration of antibiotics, however, resulted in significantly higher reduction of PD and a lower number of deep pockets compared to PDT.
Resumo:
OBJECTIVE: The objective of the study is to compare the clinical, microbiological and host-derived effects in the non-surgical treatment of initial peri-implantitis with either adjunctive local drug delivery (LDD) or adjunctive photodynamic therapy (PDT) after 12 months. MATERIALS AND METHODS: Forty subjects with initial peri-implantitis, that is, pocket probing depths (PPD) 4-6 mm with bleeding on probing (BoP) and radiographic bone loss ≤2 mm, were randomly assigned to two treatment groups. All implants were mechanically debrided with titanium curettes and with a glycine-based powder airpolishing system. Implants in the test group (N = 20) received adjunctive PDT, whereas minocycline microspheres were locally delivered into the peri-implant pockets of control implants (N = 20). At sites with residual BoP, treatment was repeated after 3, 6, 9 and 12 months. The primary outcome variable was the change in the number of peri-implant sites with BoP. Secondary outcome variables included changes in PPD, clinical attachment level (CAL), mucosal recession (REC) and in bacterial counts and crevicular fluid (CF) levels of host-derived biomarkers. RESULTS: After 12 months, the number of BoP-positive sites decreased statistically significantly (P < 0.05) from baseline in both groups (PDT: 4.03 ± 1.66-1.74 ± 1.37, LDD: 4.41 ± 1.47-1.55 ± 1.26). A statistically significant (P < 0.05) decrease in PPD from baseline was observed at PDT-treated sites up to 9 months (4.19 ± 0.55 mm to 3.89 ± 0.68 mm) and up to 12 months at LDD-treated sites (4.39 ± 0.77 mm to 3.83 ± 0.85 mm). Counts of Porphyromonas gingivalis and Tannerella forsythia decreased statistically significantly (P < 0.05) from baseline to 6 months in the PDT and to 12 months in the LDD group, respectively. CF levels of IL-1β decreased statistically significantly (P < 0.05) from baseline to 12 months in both groups. No statistically significant differences (P > 0.05) were observed between groups after 12 months with respect to clinical, microbiological and host-derived parameters. CONCLUSIONS: Non-surgical mechanical debridement with adjunctive PDT was equally effective in the reduction of mucosal inflammation as with adjunctive delivery of minocycline microspheres up to 12 months. Adjunctive PDT may represent an alternative approach to LDD in the non-surgical treatment of initial peri-implantitis.