733 resultados para HABITAT CLASSIFICATION SYSTEM (HCS)
Resumo:
Objective: The aim was to compare there ulcer classification systems as predictors of the outcome of diabetic foot ulcers; the Wagner, the University of Texas (UT) and the size (area, depth), sepsis, arteriopathy, denervation system (S(AD)SAD) systems in specialist clinic in Brazil.Methods: Ulcer area, depth, appearance, infection and associated ischaemia and neuropathy were recorded in a consecutive series of 94 subjects. A novel score, the S(AD)SAD score, was derived from the sum of individual items of the S(AD)SAD system, and was evaluated. Follow-up was for at least 6 months. The primary outcome measure was the incidence of healing.Results: Mean age was 57.6 years; 57 (60.6%) were made. Forty-eight ulcers (51.1%) healed without surgery; 11 (12.2%) subjects underwent minor amputation. Significant differences in terms of healing were observed for depth (P = 0.002), infection (P = 0.006) and denervation (P = 0.002) using the S(AD)SAD system, for UT grade (P = 0.002) and stage (P = 0.032) and for Wagner grades (P = 0.002). Ulcers with an S(AD)SAD score of <= 9 (total possible 15) were 7.6 times more likely to heal than scores >= 10 (P < 0.001).Conclusions: All three systems predicted ulcer outcome. The S(AD)SAD score of ulcer severity could represent a useful addition to routine clinical practice. The association between outcome and ulcer depth confirms earlier reports. The association with infection was stronger than that reported from the centres in Europe or North America. The very strong association with neuropathy has only previously been observed in Tanzania. Studies designed to compare the outcome in different countries should adopt systems of classification, which are valid for the populations studied.
Resumo:
An intelligent system that emulates human decision behaviour based on visual data acquisition is proposed. The approach is useful in applications where images are used to supply information to specialists who will choose suitable actions. An artificial neural classifier aids a fuzzy decision support system to deal with uncertainty and imprecision present in available information. Advantages of both techniques are exploited complementarily. As an example, this method was applied in automatic focus checking and adjustment in video monitor manufacturing. Copyright © 2005 IFAC.
Resumo:
Nowadays there is great interest in damage identification using non destructive tests. Predictive maintenance is one of the most important techniques that are based on analysis of vibrations and it consists basically of monitoring the condition of structures or machines. A complete procedure should be able to detect the damage, to foresee the probable time of occurrence and to diagnosis the type of fault in order to plan the maintenance operation in a convenient form and occasion. In practical problems, it is frequent the necessity of getting the solution of non linear equations. These processes have been studied for a long time due to its great utility. Among the methods, there are different approaches, as for instance numerical methods (classic), intelligent methods (artificial neural networks), evolutions methods (genetic algorithms), and others. The characterization of damages, for better agreement, can be classified by levels. A new one uses seven levels of classification: detect the existence of the damage; detect and locate the damage; detect, locate and quantify the damages; predict the equipment's working life; auto-diagnoses; control for auto structural repair; and system of simultaneous control and monitoring. The neural networks are computational models or systems for information processing that, in a general way, can be thought as a device black box that accepts an input and produces an output. Artificial neural nets (ANN) are based on the biological neural nets and possess habilities for identification of functions and classification of standards. In this paper a methodology for structural damages location is presented. This procedure can be divided on two phases. The first one uses norms of systems to localize the damage positions. The second one uses ANN to quantify the severity of the damage. The paper concludes with a numerical application in a beam like structure with five cases of structural damages with different levels of severities. The results show the applicability of the presented methodology. A great advantage is the possibility of to apply this approach for identification of simultaneous damages.
Resumo:
During the petroleum well drilling operation many mechanical and hydraulic parameters are monitored by an instrumentation system installed in the rig called a mud-logging system. These sensors, distributed in the rig, monitor different operation parameters such as weight on the hook and drillstring rotation. These measurements are known as mud-logging records and allow the online following of all the drilling process with well monitoring purposes. However, in most of the cases, these data are stored without taking advantage of all their potential. On the other hand, to make use of the mud-logging data, an analysis and interpretationt is required. That is not an easy task because of the large volume of information involved. This paper presents a Support Vector Machine (SVM) used to automatically classify the drilling operation stages through the analysis of some mud-logging parameters. In order to validate the results of SVM technique, it was compared to a classification elaborated by a Petroleum Engineering expert. © 2006 IEEE.
Resumo:
The object of this investigation was to identify and analize aspects of the health status related to absenteism in physical education teachers in the municipal education system of the city of Campinas, Brazil, as related to the medical leave program. The non-concurrent prospective study was accomplished by means of a comparison with teachers who work only in the classroom, refering to a three year period. In the variables of greatest interest, the Pearson non-parametric chi-square (X2) statistical test was adopted. Calculations of relative risk and level of confidence were made using the Epi-info computer program. Significant differences were observed in the following diagnostic groups favoring the not exposed group: i) Supplementary Classification of factors that exercise influence over the health status and access to health services and ii) Digestive system illness; while the physical education teachers showed a significant difference in: i) diseases of the musculoskeletal and connective tissue system and ii) Injuries and poisoing. Possible explications for some of the adverse effects as well as the protective ones that were observed include physical activity as a way of life along with being a physical education teacher and on the other side, peculiar behavior of epidemiological descriptive characteristics, like sex and age, within the socio-economic context of the country. © Copyright Moreira Jr. Editora.
Resumo:
In addition to feeding on carrion tissues and fluids, social wasps can also prey on immature and adult carrion flies, thereby reducing their populations and retarding the decomposition process of carcasses. In this study, we report on the occurrence and behavior of social wasps attracted to vertebrate carrion. The collections were made monthly from September 2006 to October 2007 in three environments (rural, urban, and forest) in six municipalities of southeast Brazil, using baited bottle traps. We collected Agelaia pallipes (Olivier, 1791) (n = 143), Agelaia vicina (Saussure, 1854) (n = 106), Agelaia multipicta (Haliday, 1836) (n = 18), and Polybia paulista Ihering, 1896 (n = 3). The wasps were observed feeding directly on the baits and preying on adult insects collected in the traps. Bait and habitat associations, temporal variability of social wasps, and possible forensic implications of their actions are discussed. © 2011 Entomological Society of America.
Resumo:
In this paper, we show a local-in-time existence result for the 3D micropolar fluid system in the framework of Besov-Morrey spaces. The initial data class is larger than the previous ones and contains strongly singular functions and measures. © 2013 Springer Basel.
Resumo:
Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e.; cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e.; support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e.; there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The appropriate feeding regime for larvae and post-larvae of crustacean decapods is essential for successful larval culture. Reports on the development and morphology of the mouthparts and foregut of these crustaceans have aided in the selection of appropriate larval foodstuffs and consequently increased larval survival and growth rate during development. In the present study, the functional morphology of foregut and mouthparts was investigated in larvae and post-larvae of the freshwater prawn M. amazonicum (Heller, 1862). From observations gathered on both the outer and inner feeding apparati the first stage larvae have obligatory lecithotrophy and feeding behaviour is initiated after molting to the second stage. The foregut of the larvae undergoes diverse morphological changes during larval development and the larval foregut of this species is primarily a mixing organ due to the absence of gastric mills and similar structures. After metamorphosis into post-larvae, drastic morphological changes occur in the foregut and mouthparts to adapt the animals to feed on the greater diversity of foods that are available in their new benthic habitat.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)