918 resultados para Guangdong Sheng
Resumo:
[96] hojas : ilustraciones.
Resumo:
[272] hojas : ilustraciones, fotografías.
Resumo:
Urbanisation as a phenomenon is a complex social process which can be quite difficult to define and understand. In recent years, urbanisation in China has developed at an ever increasing rate. Urban population rates have now surpassed 50% (figure from 2011). Based on the growing importance placed on the increasing number of urbanised/urbanising townships, the issue of people’s lives within the townships has also become an important feature in regard to the impact that urbanisation is having upon China. Clearly this links China’s urban development to the transformation of sport participation in China. This research aims to examine what the reality of the sport participation on-the-ground is within six selective townships in China and examine the reasons for the reality through the lens of figurational theory. In order to do so, some features of Norbert Elias’s figurational theory (involvement and detachment, power) are employed as the theoretical framework. Two townships in Lüliang of Shanxi province, two townships in Jincheng of Shanxi Province and two townships in Huizhou of Guangdong province were selected in order to answer these key questions. The three cities which the townships are located are in different stages of urbanisation. Semi-structured interview were conducted. The current situation were described from the aspects of age, gender, occupation and income aspects and the transformation of sport participation. This research concludes that the current sport participation situation within these six townships is due to the influences stemming from several aspects: sport policy and sport organisation; economy condition, culture, urbanisation, and self-requirement and individual interest towards sport. This power forms a network of interdependency which also aids our understanding of the current sport participation within these six selected Chinese townships.
Resumo:
Widespread adoption of lead-free materials and processing for printed circuit board (PCB) assembly has raised reliability concerns regarding surface insulation resistance (SIR) degradation and electrochemical migration (ECM). As PCB conductor spacings decrease, electronic products become more susceptible to these failures mechanisms, especially in the presence of surface contamination and flux residues which might remain after no-clean processing. Moreover, the probability of failure due to SIR degradation and ECM is affected by the interaction between physical factors (such as temperature, relative humidity, electric field) and chemical factors (such as solder alloy, substrate material, no-clean processing). Current industry standards for assessing SIR reliability are designed to serve as short-term qualification tests, typically lasting 72 to 168 hours, and do not provide a prediction of reliability in long-term applications. The risk of electrochemical migration with lead-free assemblies has not been adequately investigated. Furthermore, the mechanism of electrochemical migration is not completely understood. For example, the role of path formation has not been discussed in previous studies. Another issue is that there are very few studies on development of rapid assessment methodologies for characterizing materials such as solder flux with respect to their potential for promoting ECM. In this dissertation, the following research accomplishments are described: 1). Long-term temp-humidity-bias (THB) testing over 8,000 hours assessing the reliability of printed circuit boards processed with a variety of lead-free solder pastes, solder pad finishes, and substrates. 2). Identification of silver migration from Sn3.5Ag and Sn3.0Ag0.5Cu lead-free solder, which is a completely new finding compared with previous research. 3). Established the role of path formation as a step in the ECM process, and provided clarification of the sequence of individual steps in the mechanism of ECM: path formation, electrodeposition, ion transport, electrodeposition, and filament formation. 4). Developed appropriate accelerated testing conditions for assessing the no-clean processed PCBs' susceptibility to ECM: a). Conductor spacings in test structures should be reduced in order to reflect the trend of higher density electronics and the effect of path formation, independent of electric field, on the time-to-failure. b). THB testing temperatures should be modified according to the material present on the PCB, since testing at 85oC can cause the evaporation of weak organic acids (WOAs) in the flux residues, leading one to underestimate the risk of ECM. 5). Correlated temp-humidity-bias testing with ion chromatography analysis and potentiostat measurement to develop an efficient and effective assessment methodology to characterize the effect of no-clean processing on ECM.
Resumo:
Gemstone Team Vision
Resumo:
Immune responses are highly energy-dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. Although it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show in this study that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show that leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell intrinsic and specific to activated effector T cells, as naive T cells and regulatory T cells did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency.
Resumo:
In the flip-chip assembly process, no-flow underfill materials have a particular advantage over traditional underfills as the application and curing of this type of underfill can be undertaken before and during the reflow process - adding high volume throughput. Adopting a no-flow underfill process may result in underfill entrapment between solder and fluid, voiding in the underfill, a possible delamination between underfill and surrounding surfaces. The magnitude of these phenomena may adversely affect the reliability of the assembly in terms of solder joint thermal fatigue. This paper presents both an experimental and mdeling analysis investigating the reliabity of a flip-chip component and how the magnitude of underfill entrapment may affect thermal-mechanical fatigue life.
Disponibilidad del recurso hídrico en la microcuenca del río Bermúdez. Región central de Costa Rica.
Resumo:
La microcuenca del río Bermúdez es parte de la principal zona de explotación hídrica en la región Central de Costa Rica, razón por la cual se realiza un diagnóstico de la disponibilidad del recurso hídrico en esta microcuenca donde se identifican las áreas con mayor problemática de disponibilidad de este recurso. Para ello se calculó un balance hídrico mensual, según uso del suelo, unidad geomorfológica y zona climática. Con base en este balance se determinó y clasificó la disponibilidad del recurso, identificando en la microcuenca solamente tres categorías: alta, media y moderada. No existen áreas de baja disponibilidad de recurso hídrico lo que demuestra que la oferta es suficiente, sin embargo, existe una presión importante sobre el recurso hídrico pues más de la mitad del área de la microcuenca se encuentra con una disponibilidad moderada.
Resumo:
The consumption of paddy rice (Oryza sativa L.) is a major inorganic arsenic exposure pathway in S.E. Asia. A multi-location survey was undertaken in Guangdong Province, South China to assess arsenic accumulation and speciation in 2 rice cultivars, one an Indica and the other a hybrid Indica. The results showed that arsenic concentrations in rice tissue increased in the order grain <husk <straw <root. Rice grain arsenic content of 2 rice cultivars was significant different and correlated with phosphorus concentration and molar ratio of P/As in shoot, being higher for the Indica cultivar than for the hybrid Indica, which suggests altering shoot phosphorus status as a promising route for breeding rice cultivars with reduced grain arsenic. Speciation of grain arsenic, performed using HPLC-ICP-MS, identified inorganic arsenic as the dominant arsenic species present in the rice grain.
Resumo:
The phase instability of bismuth perovskite (BiMO3), where M is a ferromagnetic cation, is exploited to create self-assembled magnetic oxide nanocrystal arrays on oxide supports. Conditions during pulsed laser deposition are tuned so as to induce complete breakdown of the perovskite precursor into bismuth oxide (Bi2 O3 ) and metal oxide (M-Ox ) pockets. Subsequent cooling in vacuum volatizes the Bi2 O3 leaving behind an array of monodisperse nanocrystals. In situ reflective high energy electron diffraction beam is exploited to monitor the synthesis in real-time. Analysis of the patterns confi rms the phase separation and volatization process. Successful synthesis of M-Ox, where M = Mn, Fe, Co, and Cr, is shown using this template-free facile approach. Detailed magnetic characterization of nanocrystals is carried out to reveal the functionalities such as magnetic anisotropy as well as larger than bulk moments, as expected in these oxide nanostructures.
Resumo:
Piezoelectric materials, which convert mechanical to electrical energy and vice versa, are typically characterized by the intimate coexistence of two phases across a morphotropic phase boundary. Electrically switching one to the other yields large electromechanical coupling coefficients. Driven by global environmental concerns, there is currently a strong push to discover practical lead-free piezoelectrics for device engineering. Using a combination of epitaxial growth techniques in conjunction with theoretical approaches, we show the formation of a morphotropic phase boundary through epitaxial constraint in lead-free piezoelectric bismuth ferrite (BiFeO3) films. Electric field-dependent studies show that a tetragonal-like phase can be reversibly converted into a rhombohedral-like phase, accompanied by measurable displacements of the surface, making this new lead-free system of interest for probe-based data storage and actuator applications.
Resumo:
We demonstrate that a quasi-crystal array of nanoholes in a metal screen can mimic a function of the lens: one-to-one imaging of a point source located a few tens of wavelengths away from the array to a point on the other side of the array. A displacement of the point source leads to a linear displacement of the image point. Complex structures composed of multiple point sources can be faithfully imaged with resolutions comparable to those of high numerical aperture lenses.
Resumo:
Oxytocin (OT) influences how humans process information about others. Whether OT affects the processing of information about oneself remains unknown. Using a double-blind, placebo-controlled within-subject design, we recorded event-related potentials (ERPs) from adults during trait judgments about oneself and a celebrity and during judgments on word valence, after intranasal OT or placebo administration. We found that OT vs. placebo treatment reduced the differential amplitudes of a fronto-central positivity at 220-280 ms (P2) during self- vs. valence-judgments. OT vs. placebo treatment tended to reduce the differential amplitude of a late positive potential at 520-1000 ms (LPP) during self-judgments but to increase the differential LPP amplitude during other-judgments. OT effects on the differential P2 and LPP amplitudes to self- vs. celebrity-judgments were positively correlated with a measure of interdependence of self-construals. Thus OT modulates the neural correlates of self-referential processing and this effect varies as a function of interdependence.
Resumo:
First principles calculations with molecular dynamics are
utilized to simulate a simplified electrical double layer formed in the
active electric potential region during the electrocatalytic oxidation of
ethanol on Pd electrodes running in an alkaline electrolyte. Our
simulations provide an atomic level insight into how ethanol oxidation
occurs in fuel cells: New mechanisms in the presence of the simplified
electrical double layer are found to be different from the traditional
ones; through concerted-like dehydrogenation paths, both acetaldehyde
and acetate are produced in such a way as to avoid a variety of
intermediates, which is consistent with the experimental data obtained
from in situ FTIR spectroscopy. Our work shows that adsorbed OH on
the Pd electrode rather than Pd atoms is the active center for the
reactions; the dissociation of the C−H bond is facilitated by the
adsorption of an OH− anion on the surface, resulting in the formation
of water. Our calculations demonstrate that water dissociation rather than H desorption is the main channel through which
electrical current is generated on the Pd electrode. The effects of the inner Helmholtz layer and the outer Helmholtz layer are
decoupled, with only the inner Helmholtz layer being found to have a significant impact on the mechanistics of the reaction. Our
results provide atomic level insight into the significance of the simplified electrical double layer in electrocatalysis, which may be
of general importance.