986 resultados para Graded Quantum Yang-baxter Reflection Equation
Resumo:
The interplay between Rashba, Dresselhaus, and Zeeman interactions in a quantum well submitted to an external magnetic field is studied by means of an accurate analytical solution of the Hamiltonian, including electron-electron interactions in a sum-rule approach. This solution allows us to discuss the influence of the spin-orbit coupling on some relevant quantities that have been measured in inelastic light scattering and electron-spin resonance experiments on quantum wells. In particular, we have evaluated the spin-orbit contribution to the spin splitting of the Landau levels and to the splitting of charge- and spin-density excitations. We also discuss how the spin-orbit effects change if the applied magnetic field is tilted with respect to the direction perpendicular to the quantum well.
Resumo:
The role of effective mass and dielectric mismatches on chemical potentials and addition energies of many-electron multishell quantum dots (QDs) is explored within the framework of a recent extension of the spin density functional theory. It is shown that although the gross electronic density is located in the wells of these multishell QDs, taking position-dependent effective mass and dielectric constant into account can lead to the appearance of relevant differences in chemical potential and addition energies as compared to standard calculations in which the effective mass and the dielectric constant of the well is assumed for the whole multishell structure.
Resumo:
The properties of hot, dense stellar matter are investigated with a finite temperature nuclear Thomas-Fermi model.
Resumo:
Several SL(3,C) self-dual instanton solutions of the Yang-Mills equations are presented which have very striking properties. While one of them is regular and SU(3) inside (outside) a sphere of arbitrarily large (small) radius, another one has all the characteristics of a meron solution (in particular its topological charge is concentrated at one point) although its Pontryagin number equals one. Their continuation to Minkowski space is also studied.
Resumo:
A new method to solve the Lorentz-Dirac equation in the presence of an external electromagnetic field is presented. The validity of the approximation is discussed, and the method is applied to a particle in the presence of a constant magnetic field.
Resumo:
The equivalence between the covariant and the noncovariant versions of a constrained system is shown to hold after quantization in the framework of the field-antifield formalism. Our study covers the cases of electromagnetism and Yang-Mills fields and sheds light on some aspects of the Faddeev-Popov method, for both the covariant and noncovariant approaches, which have not been fully clarified in the literature.
Resumo:
A pseudoclassical model for a spinning nonrelativistic particle is presented. The model contains two first-class constraints which after quantization give rise to the Levy-Leblond equation for a spin-1/2 particle.
Resumo:
A new arena for the dynamics of spacetime is proposed, in which the basic quantum variable is the two-point distance on a metric space. The scaling dimension (that is, the Kolmogorov capacity) in the neighborhood of each point then defines in a natural way a local concept of dimension. We study our model in the region of parameter space in which the resulting spacetime is not too different from a smooth manifold.
Resumo:
Recently a new Bell inequality has been introduced by Collins et al. [Phys. Rev. Lett. 88, 040404 (2002)], which is strongly resistant to noise for maximally entangled states of two d-dimensional quantum systems. We prove that a larger violation, or equivalently a stronger resistance to noise, is found for a nonmaximally entangled state. It is shown that the resistance to noise is not a good measure of nonlocality and we introduce some other possible measures. The nonmaximally entangled state turns out to be more robust also for these alternative measures. From these results it follows that two von Neumann measurements per party may be not optimal for detecting nonlocality. For d=3,4, we point out some connections between this inequality and distillability. Indeed, we demonstrate that any state violating it, with the optimal von Neumann settings, is distillable.
Resumo:
Optimal and finite positive operator valued measurements on a finite number N of identically prepared systems have recently been presented. With physical realization in mind, we propose here optimal and minimal generalized quantum measurements for two-level systems. We explicitly construct them up to N = 7 and verify that they are minimal up to N = 5.
Resumo:
We apply majorization theory to study the quantum algorithms known so far and find that there is a majorization principle underlying the way they operate. Grover's algorithm is a neat instance of this principle where majorization works step by step until the optimal target state is found. Extensions of this situation are also found in algorithms based in quantum adiabatic evolution and the family of quantum phase-estimation algorithms, including Shor's algorithm. We state that in quantum algorithms the time arrow is a majorization arrow.