926 resultados para Glued laminated timber
Resumo:
The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is now possible to print engineering structures. This paper presents a study of the mechanical behavior of 3D printed structures using cementitious powder. Microscopic observation reveals that the 3D printed products have a layered orthotropic microstructure, in which each layer consists of parallel strips. Compression and flexural tests were conducted to determine the mechanical properties and failure characteristics of such materials. The test results confirmed that the 3D printed structures are laminated with apparent orthotropy. Based on the experimental results, a stress-strain relationship and a failure criterion based on the maximum stress criterion for orthotropic materials are proposed for the structures of 3D printed material. Finally, a finite element analysis was conducted for a 3D printed shell structure, which shows that the printing direction has a significant influence on the load bearing capacity of the structure.
Resumo:
A significant increase in strength and performance of reinforced concrete, timber and metal beams may be achieved by adhesively bonding a fibre reinforced polymer composite, or metallic such as steel plate to the tension face of a beam. One of the major failure modes in these plated beams is the debonding of the plate from the original beam in a brittle manner. This is commonly attributed to the interfacial stresses between the adherends whose quantification has led to the development of many analytical solutions over the last two decades. The adherends are subjected to axial, bending and shear deformations. However, most analytical solutions have neglected the effect of shear deformation in adherends. Few solutions consider this effect approximately but are limited to one or two specific loading conditions. This paper presents a more rigorous solution for interfacial stresses in plated beams under an arbitrary loading with the shear deformation of the adherends duly considered in closed form using Timoshenko’s beam theory. The solution is general to linear elastic analysis of prismatic beams of arbitrary cross section under arbitrary loading with a plate of any thickness bonded either symmetrically or asymmetrically with respect to the span of the beam.
Resumo:
Hemp-lime concrete is a sustainable alternative to standard building wall materials, with low associated embodied energy. It exhibits good hygric, acoustic and thermal properties, making it an exciting, sustainable building envelope material. When cast in temporary shuttering around a timber frame, it exhibits lower thermal conductivity than concrete, and consequently achieves low U-values in a primarily mono-material wall construction. Although cast relatively thick hemp-lime walls do not generally achieve the low U-values stipulated in building regulations. However assessment of its thermal performance through evaluation of its resistance to thermal transfer alone, underestimates its true thermal quality. The thermal inertia, or reluctance of the wall to change its temperature when exposed to changing environmental temperatures, also has a significant impact on the thermal quality of the wall, the thermal comfort of the interior space and energy consumption due to space heating. With a focus on energy reduction in buildings, regulations emphasise thermal resistance to heat transfer with only less focus on thermal inertia or storage benefits due to thermal mass. This paper investigates dynamic thermal responsiveness in hemp-lime concrete walls. It reports the influence of thermal conductivity, density and specific heat through analysis of steady state and transient heat transfer, in the walls. A novel hot-box design which isolates the conductive heat flow is used, and compared with tests in standard hot-boxes. Thermal diffusivity and effusivity are evaluated, using experimentally measured conductivity, based on analytical relationships. Experimental results evident that hemp-lime exhibits high thermal inertia. They show the thermal inertia characteristics compensate for any limitations in the thermal resistance of the construction material. When viewed together the thermal resistance and mass characteristics of hemp-lime are appropriate to maintain comfortable thermal indoor conditions and low energy operation.
Resumo:
This paper explores the theme of exhibiting architectural research through a particular example, the development of the Irish pavilion for the 14th architectural biennale, Venice 2014. Responding to Rem Koolhaas’s call to investigate the international absorption of modernity, the Irish pavilion became a research project that engaged with the development of the architectures of infrastructure in Ireland in the twentieth and twenty-first centuries. Central to this proposition was that infrastructure is simultaneously a technological and cultural construct, one that for Ireland occupied a critical position in the building of a new, independent post-colonial nation state, after 1921.
Presupposing infrastructure as consisting of both visible and invisible networks, the idea of a matrix become a central conceptual and visual tool in the curatorial and design process for the exhibition and pavilion. To begin with this was a two-dimensional grid used to identify and order what became described as a series of ten ‘infrastructural episodes’. These were determined chronologically across the decades between 1914 and 2014 and their spatial manifestations articulated in terms of scale: micro, meso and macro. At this point ten academics were approached as researchers. Their purpose was twofold, to establish the broader narratives around which the infrastructures developed and to scrutinise relevant archives for compelling visual material. Defining the meso scale as that of the building, the media unearthed was further filtered and edited according to a range of categories – filmic/image, territory, building detail, and model – which sought to communicate the relationship between the pieces of architecture and the larger systems to which they connect. New drawings realised by the design team further iterated these relationships, filling in gaps in the narrative by providing composite, strategic or detailed drawings.
Conceived as an open-ended and extendable matrix, the pavilion was influenced by a series of academic writings, curatorial practices, artworks and other installations including: Frederick Kiesler’s City of Space (1925), Eduardo Persico and Marcello Nizzoli’s Medaglio d’Oro room (1934), Sol Le Witt’s Incomplete Open Cubes (1974) and Rosalind Krauss’s seminal text ‘Grids’ (1979). A modular frame whose structural bays would each hold and present an ‘episode’, the pavilion became both a visual analogue of the unseen networks embodying infrastructural systems and a reflection on the predominance of framed structures within the buildings exhibited. Sharing the aspiration of adaptability of many of these schemes, its white-painted timber components are connected by easily-dismantled steel fixings. These and its modularity allow the structure to be both taken down and re-erected subsequently in different iterations. The pavilion itself is, therefore, imagined as essentially provisional and – as with infrastructure – as having no fixed form. Presenting archives and other material over time, the transparent nature of the space allowed these to overlap visually conveying the nested nature of infrastructural production. Pursuing a means to evoke the qualities of infrastructural space while conveying a historical narrative, the exhibition’s termination in the present is designed to provoke in the visitor, a perceptual extension of the matrix to engage with the future.
Resumo:
The pinewood nematode (PWN), Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD), is a serious pest and pathogen of forest tree species, in particular among the genus Pinus. It was first reported from Japan in the beginning of the XXth century, where it became the major ecological catastrophe of pine forests, with losses reaching over 2 million m3/ year in the 1980s. It has since then spread to other Asian countries such as China, Taiwan and Korea, causing serious losses and economic damage. In 1999, the PWN was first detected in the European Union (EU), in Portugal, and immmediately prompted several government (national and EU) actions to assess the extent of the nematode’s presence, and to contain B. xylophilus and its insect vector (Monochamus galloprovincialis) to an area with a 30km radius in the Setúbal Peninsula, 20 km south of Lisbon. International wood trade, with its political as well as economic ramifications, has been seriously jeopardized. The origin of the population of PWN found in Portugal remains elusive. Several hypotheses may be considered regarding pathway analysis, basically from two general origins: North America or the Far East (Japan or China). World trade of wood products such as timber, wooden crates, palettes, etc… play an important role in the potential dissemination of the pinewood nematode. In fact, human activities involving the movement of wood products may be considered the single most important factor in spreading of the PWN. Despite the dedicated and concerted actions of government agencies, this disease continues to spread. Very recently (2006), in Portugal, forestry and phytosanitary authorities (DGRF and DGPC) have announced a new strategy for the control and ultimately the erradication of the nematode, under the coordination of the national program for the control of the pinewood nematode (PROLUNP). Research regarding the bioecology of the nematode and insect as well as new detection methods, e.g., involving real-time PCR, has progressed since 1999. International agreements (GATT, WTO) and sharing of scientific information is of paramount importance to effectively control the nematode and its vector, and thus protect our forest ecosystems and forest economy.
Resumo:
This paper discusses the sustainable performance of geosynthetic clay liners (GCLs) which are popularly specified as “leachate retaining” or as “water proofing” membranes in the geo-environmental construction industry. Geosynthetic clay liners (GCLs) are composite matting comprising of bentonite clay with two covering geosynthetics. These are innovative labour saving construction material, developed over the last three decades. The paper outlines the variety of Geosynthetic Clay Liners (GCLs) can be classified essentially into two distinctly different forms viz; (a) air dry (< 8% m/c) with granular or powdered bentonite or (b) bentonite cake factory prehydrated to a moisture content (~40% m/c) beyond its shrinkage limit and vacuum extruded as a clay cake to enhance its sustainable performance. The dominant mineral in bentonite clay is the three-layered (2:1) clay mineral montmorillonite. High quality bentonites need to be used in the GCL manufacture. Sodium montmorillonite has the desired characteristic of high swelling capacity, high cation exchange capacity and the consequently very low hydraulic conductivity, providing the basis for the hydraulic sealing medium in GCLs. These encapsulate the active montmorillonite clay minerals which depend on the water and chemical balance between the sealing element and the surrounding geo environment. Quantitative mineralogical analyses and an assessment of the adsorbed cation regime, diffusion coefficients and clay leachate compatibility must necessarily be an integral part of the site appraisal to ensure acceptable long term sustainability and performance. Factors influencing the desired performance of bentonite in the GCLs placed in difficult construction and hostile chemical environments are discussed in this paper. Accordingly, the performance specifications for GCLs are identified and the appropriateness of enhancing the cation exchange capacity with polymer treatment and the need for factory prehydration of the untreated sodium bentonite is emphasised. The advantage of factory prehydrating the polymer treated bentonite to fluid content beyond its shrinkage limit and subsequently factory processing it to develop laminated clay is to develop a GCL that has enviable sealing characteristics with a greater resistance to geochemical attack and cracking. Since clay liners are buried in the ground as base liners, capping layer or as structural water proofing membrane, they can easily avoid strict quality and performance monitoring being “out of sight, out of mind!”. It is very necessary that barrier design for leachate containment must necessarily be in accordance with legislative requirement Assessment of long term hydraulic conductivities and clay-leachate compatibility assessment is deemed necessary. The derogatory factors affecting the sustainable performance of the bentonite in GCLs placed in difficult construction and hostile chemical environments are discussed. Sustainability concepts incorporated in waste management practice must aim to achieve 100% recycling and fully implement the handling of solid waste in developing countries with relatively lower labour costs.
Resumo:
This paper deals with a third order shear deformation finite element model wich is applied on the active resonance control thin plate/shell laminated structures with integrated piezoelectric layers of patches, acting as sensors and actuators. The finite element model is a single layer tringular nonconforming plate/shell element with 24 degrees of freedom for he generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, wich are surface bonded on the laminated. The newwork method is considered to calculate the dynamic response of the laminated sructures forced to vibrate in the first natural frequency. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers. The model is applied to the solution of one illustrative case, and the results are presented and discussed.
Resumo:
This paper deals with the geometrically non linear analysis of thin plate/shell laminated structures with embedded integrated piezoelectric actuors or sensors layers and/or patches.The model is based on the Kirchhoff classical laminated theory and can be applied to plate and shell adaptive structures with arbitrary shape, general mechanical and electrical loadings. the finite element model is a nonconforming single layer triangular plate/shell element with 18 degrees of fredom for the generalized displacements and one eçlectrical potential degree of freedom for each piezoelectric layer or patch. An updated Lagrangian formulation associated to Newton-Raphson technique is used to solve incrementally and iteratively the equilibrium equation.The model is applied in the solution of four illustrative cases, and the results are compared and discussedwith alternative solutions when available.
Resumo:
In the recent years the study of smart structures has attracted significant researchers, due to their potential benefits in a wide range of applications, such as shape control, vibration suppression, noise attenuation and damage detection. The applications in aerospace industry are of great relevance, such as in active control of airplane wings, helicopter blade rotor, space antenna. The use of smart materials, such as piezoelectric materials, in the form of layers or patches embedded and/or surface bonded on laminated composite structures, can provide structures that combine the superior mechanical properties of composite materials and the capability to sense and adapt their static and dynamic response, becoming adaptive structures. The piezoelectric materials have the property of generate electrical charge under mechanical load or deformation, and the reverse, applying an electrical field to the material results in mechanical strain or stresses.
Resumo:
This paper deals with a finite formulation baserd on the classical laminated plate tehory, for active control of thin late laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previuos optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position in performed to maximize the piezoelectric actuator efficiency. the simulating annealing mthod is used for these purposes. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of fredom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, wich can be surface bonded or imbedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorirhm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Dissertação de natureza científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Edificações
Resumo:
O presente trabalho apresenta um estudo laboratorial que teve como finalidade o reconhecimento de perda de propriedades da madeira de edifícios antigos quando degradada por carunchos. Foi estudada madeira antiga de pinho e de choupo, com idades compreendidas entre 100 e 200 anos. Como abordagem inicial são apresentadas as características da madeira e dos edifícios pombalinos e gaioleiros onde esta era bastante usada, não só como elemento deacabamento, mas principalmente como elemento estrutural. São apresentados os vários fatores que levam à degradação da madeira assim como alguns métodos de avaliação e diagnóstico dos estados de conservação dos elementos de madeira que se encontram nos edifícios. É também desenvolvido um estudo sobre o caruncho grande e caruncho pequeno, seu ciclo de vida e forma como degrada a madeira, servindo de base ao estudo laboratorial. No desenvolvimento foi avaliado o estado de degradação de provetes de madeira antiga com 30 x 30 x 90 mm e de seguida correlacionado com a sua resistência à compressão, o seu módulo de elasticidade e a extensão em fase plástica. Desta forma pretende-se estudar o modo como os diferentes estados de degradação por caruncho influenciam as caraterísticas mecânicas das peças de madeira.