916 resultados para Gesture based audio user interface
Resumo:
The study of the user scheduling problem in a Low Earth Orbit (LEO) Multi-User MIMO system is the objective of this thesis. With the application of cutting-edge digital beamforming algorithms, a LEO satellite with an antenna array and a large number of antenna elements can provide service to many user terminals (UTs) in full frequency reuse (FFR) schemes. Since the number of UTs on-ground are many more than the transmit antennas on the satellite, user scheduling is necessary. Scheduling can be accomplished by grouping users into different clusters: users within the same cluster are multiplexed and served together via Space Division Multiple Access (SDMA), i.e., digital beamforming or Multi-User MIMO techniques; the different clusters of users are then served on different time slots via Time Division Multiple Access (TDMA). The design of an optimal user grouping strategy is known to be an NP-complete problem which can be solved only through exhaustive search. In this thesis, we provide a graph-based user scheduling and feed space beamforming architecture for the downlink with the aim of reducing user inter-beam interference. The main idea is based on clustering users whose pairwise great-circle distance is as large as possible. First, we create a graph where the users represent the vertices, whereas an edge in the graph between 2 users exists if their great-circle distance is above a certain threshold. In the second step, we develop a low complex greedy user clustering technique and we iteratively search for the maximum clique in the graph, i.e., the largest fully connected subgraph in the graph. Finally, by using the 3 aforementioned power normalization techniques, a Minimum Mean Square Error (MMSE) beamforming matrix is deployed on a cluster basis. The suggested scheduling system is compared with a position-based scheduler, which generates a beam lattice on the ground and randomly selects one user per beam to form a cluster.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The exploitation of aqueous biphasic extraction is proposed for the first time in flow analysis This extraction strategy stands out for being environmentally attractive since it is based in the utilization of two immiscible phases that are intrinsically aqueous The organic solvents of the traditional liquid-liquid extractions ale no longer used, being replaced by non-toxic, non-flammable and non-volatile ones. A single interface flow analysis (SIFA) system was implemented to carry out the extraction process due to its favourable operational characteristics that include the high automation level and simplicity of operation, the establishment of a dynamic interface where the mass transfer occurred between the two immiscible aqueous phases, and the versatile control over the extraction process namely the extraction time The application selected to demonstrate the feasibility of SIFA to perform this aqueous biphasic extraction was the pre-concentration of lead. After extraction, lead reacted with 8-hydroxyquinoline-5-sulfonic acid and the resulting product was determined by a fluorimetric detector included in the flow manifold. Therefore, the SIFA single interface was used both as extraction (enrichment) and reaction interface. (C) 2010 Elsevier B.V All rights reserved.
Resumo:
This paper evaluates the advantages of using hardwood short fibre pulp (eucalyptus) as alternative to softwood long fibre pulp (pinus) and polymer fibres, traditionally used in reinforcement of cement-based materials. The effects of cellulose fibre length on microstructure and on mechanical performance of fibre-cement composites were evaluated before and after accelerated ageing cycles. Hardwood pulp fibres were better dispersed in the cement matrix and provided higher number of fibres per unitary weight or volume, in relation to softwood long fibre pulp. The short reinforcing elements lead to an effective crack bridging of the fragile matrix, which contributes to the improvement of the mechanical performance of the composite after ageing. These promising results show the potential of eucalyptus short fibres for reducing costs by both the partial replacement of expensive synthetic fibres in air curing process and the energy savings during pulp refining. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective of the present work is to evaluate the effect of surface modification of cellulose pulp fibres on the mechanical and microstructure of fibre-cement composites. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) in an attempt to improve their durability into fibre-cement composites. The surface modification showed significant influence on the microstructure of the composites on the fibre-matrix interface and in the mineralization of the fibre lumen as seen by scanning electron microscopy (SEM) with back-scattered electron (BSE) detector. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites. Composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the mechanisms of degradation of fibre-cement composites. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The inclined plane test (IPT) is commonly performed to measure the interface shear strength between different materials as those used in cover systems of landfills. The test, when interpreted according to European test Standards provides the static interface friction angle, usually assumed for 50 mm displacement and denoted as phi(stat)(50). However, if interpreted considering the several phases of the sliding process, the test is capable of yielding more realistic information about the interface shear strength such as differentiating interfaces which exhibit the same value of phi(stat)(50) but different behavior for displacement less than 50 mm. In this paper, the IPT is used to evaluate the interface shear strength of some materials usually present in cover liner systems of landfill. The results of the tests were analyzed for both, the static and the dynamic phases of the sliding and were interpreted based on the static initial friction angle, phi(0), and the limit friction angle, phi(lim). It is shown that depending on the sliding behavior of the interfaces, phi(stat)(50), which is usually adopted as the designing parameter in stability analysis, can be larger than phi(0) and phi(lim). (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study is to quantify the mass transfer velocity using turbulence parameters from simultaneous measurements of oxygen concentration fields and velocity fields. The surface divergence model was considered in more detail, using data obtained for the lower range of beta (surface divergence). It is shown that the existing models that use the divergence concept furnish good predictions for the transfer velocity also for low values of beta, in the range of this study. Additionally, traditional conceptual models, such as the film model, the penetration-renewal model, and the large eddy model, were tested using the simultaneous information of concentration and velocity fields. It is shown that the film and the surface divergence models predicted the mass transfer velocity for all the range of the equipment Reynolds number used here. The velocity measurements showed viscosity effects close to the surface, which indicates that the surface was contaminated with some surfactant. Considering the results, this contamination can be considered slight for the mass transfer predictions. (C) 2009 American Institute of Chemical Engineers AIChE J, 56: 2005-2017; 2010
Resumo:
This paper describes the development of an optimization model for the management and operation of a large-scale, multireservoir water supply distribution system with preemptive priorities. The model considers multiobjectives and hedging rules. During periods of drought, when water supply is insufficient to meet the planned demand, appropriate rationing factors are applied to reduce water supply. In this paper, a water distribution system is formulated as a network and solved by the GAMS modeling system for mathematical programming and optimization. A user-friendly interface is developed to facilitate the manipulation of data and to generate graphs and tables for decision makers. The optimization model and its interface form a decision support system (DSS), which can be used to configure a water distribution system to facilitate capacity expansion and reliability studies. Several examples are presented to demonstrate the utility and versatility of the developed DSS under different supply and demand scenarios, including applications to one of the largest water supply systems in the world, the Sao Paulo Metropolitan Area Water Supply Distribution System in Brazil.
Resumo:
Controlling the phase stability of ZrO2 nanoparticles is of major importance in the development of new ZrO2-based nanotechnologies. Because of the fact that in nanoparticles the surface accounts for a larger fraction of the total atoms, the relative phase stability can be controlled throughout the surface composition, which can be toned by surface excess of one of the components of the system., The objective of this work is to delineate a relationship between surface excess (or solid solution) of MgO relative to ZrO2 and the polymorphic stability of (ZrO2)(1-x) - (MgO), nanopowders, where 0.0 <= x <= 0.6. The nanopowders were prepared by a liquid precursor method at 500 degrees C and characterized by N-2 adsorption (BET), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), and Raman spectroscopy. For pure ZrO2 samples, both tetragonal and monoclinic polymorphs were detected, as expected considering the literature. For MgO molar fractions varying from 0.05 to 0.10, extensive solid solution could not be detected, and a ZrO2 surface energy reduction, caused by Mg surface excess detected by XPS, promoted tetragonal polymorph thermodynamic stabilization with relation to monoclinic. For MgO molar fractions higher than 0.10 and up to 0.40, Mg solid solution could be detected and induced cubic phase stabilization. MgO periclase was observed only at x = 0.6. A discussion based on the relationship between the surface excess, surface energy, and polymorph stability is presented.
Resumo:
This paper presents an analysis of the performance of a baseband multiple-input single-output (MISO) time reversal ultra-wideband system (TR-UWB) incorporating a symbol spaced decision feedback equalizer (DFE). A semi-analytical performance analysis based on a Gaussian approach is considered, which matched well with simulation results, even for the DFE case. The channel model adopted is based on the IEEE 802.15.3a model, considering correlated shadowing across antenna elements. In order to provide a more realistic analysis, channel estimation errors are considered for the design of the TR filter. A guideline for the choice of equalizer length is provided. The results show that the system`s performance improves with an increase in the number of transmit antennas and when a symbol spaced equalizer is used with a relatively small number of taps compared to the number of resolvable paths in the channel impulse response. Moreover, it is possible to conclude that due to the time reversal scheme, the error propagation in the DFE does not play a role in the system`s performance.
Resumo:
In this paper the continuous Verhulst dynamic model is used to synthesize a new distributed power control algorithm (DPCA) for use in direct sequence code division multiple access (DS-CDMA) systems. The Verhulst model was initially designed to describe the population growth of biological species under food and physical space restrictions. The discretization of the corresponding differential equation is accomplished via the Euler numeric integration (ENI) method. Analytical convergence conditions for the proposed DPCA are also established. Several properties of the proposed recursive algorithm, such as Euclidean distance from optimum vector after convergence, convergence speed, normalized mean squared error (NSE), average power consumption per user, performance under dynamics channels, and implementation complexity aspects, are analyzed through simulations. The simulation results are compared with two other DPCAs: the classic algorithm derived by Foschini and Miljanic and the sigmoidal of Uykan and Koivo. Under estimated errors conditions, the proposed DPCA exhibits smaller discrepancy from the optimum power vector solution and better convergence (under fixed and adaptive convergence factor) than the classic and sigmoidal DPCAs. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
This work aims at proposing the use of the evolutionary computation methodology in order to jointly solve the multiuser channel estimation (MuChE) and detection problems at its maximum-likelihood, both related to the direct sequence code division multiple access (DS/CDMA). The effectiveness of the proposed heuristic approach is proven by comparing performance and complexity merit figures with that obtained by traditional methods found in literature. Simulation results considering genetic algorithm (GA) applied to multipath, DS/CDMA and MuChE and multi-user detection (MuD) show that the proposed genetic algorithm multi-user channel estimation (GAMuChE) yields a normalized mean square error estimation (nMSE) inferior to 11%, under slowly varying multipath fading channels, large range of Doppler frequencies and medium system load, it exhibits lower complexity when compared to both maximum likelihood multi-user channel estimation (MLMuChE) and gradient descent method (GrdDsc). A near-optimum multi-user detector (MuD) based on the genetic algorithm (GAMuD), also proposed in this work, provides a significant reduction in the computational complexity when compared to the optimum multi-user detector (OMuD). In addition, the complexity of the GAMuChE and GAMuD algorithms were (jointly) analyzed in terms of number of operations necessary to reach the convergence, and compared to other jointly MuChE and MuD strategies. The joint GAMuChE-GAMuD scheme can be regarded as a promising alternative for implementing third-generation (3G) and fourth-generation (4G) wireless systems in the near future. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel as it is simple to code and sufficient for practical engineering design problems. This also makes the code much more ‘user-friendly’ than structured grid approaches as the gridding process is done automatically. The CFD methodology relies on a finite-volume formulation of the unsteady Euler equations and is solved using a standard explicit Godonov (MUSCL) scheme. Both octree-based adaptive mesh refinement and shared-memory parallel processing capability have also been incorporated. For further details on the theory behind the code, see the companion report 2007/12.
Resumo:
Cpfg is a program for simulating and visualizing plant development, based on the theory of L-systems. A special-purpose programming language, used to specify plant models, is an essential feature of cpfg. We review postulates of L-system theory that have influenced the design of this language. We then present the main constructs of this language, and evaluate it from a user's perspective.