941 resultados para Genome duplication
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
Resumo:
Paracoccidioides brasiliensis isolates are not homogeneous in their patterns of pathogenicity in animals and adhesion to epithelial cells. During this investigation, genotypic differences were observed between two samples of P. brasiliensis strain 18 yeast phase (Pbl 8) previously cultured many times, one taken before (Pb18a) and the other after (Pb18b) animal inoculation. Random amplified polymorphic DNA analysis using the primer OPJ4 distinguished Pb18b from Pbl Ba by one 308 bp DNA fragment, which after cloning and sequencing was shown to encode a polypeptide sequence homologous to the protein beta-adaptin. It is suggested, by comparison to other micro-organisms, that this protein might play an important role in the virulence of P. brasiliensis. This result demonstrates the influence of in vitro subculturing on the genotype of this organism.
Resumo:
BackgroundDetection and quantification of hepatitis C virus (HCV) RNA is integral to diagnostic and therapeutic regimens. All molecular assays target the viral 5'-noncoding region (59-NCR), and all show genotype-dependent variation of sensitivities and viral load results. Non-western HCV genotypes have been under-represented in evaluation studies. An alternative diagnostic target region within the HCV genome could facilitate a new generation of assays.Methods and FindingsIn this study we determined by de novo sequencing that the 3'-X-tail element, characterized significantly later than the rest of the genome, is highly conserved across genotypes. To prove its clinical utility as a molecular diagnostic target, a prototype qualitative and quantitative test was developed and evaluated multicentrically on a large and complete panel of 725 clinical plasma samples, covering HCV genotypes 1-6, from four continents (Germany, UK, Brazil, South Africa, Singapore). To our knowledge, this is the most diversified and comprehensive panel of clinical and genotype specimens used in HCV nucleic acid testing (NAT) validation to date. The lower limit of detection (LOD) was 18.4 IU/ml (95% confidence interval, 15.3-24.1 IU/ml), suggesting applicability in donor blood screening. The upper LOD exceeded 10(-9) IU/ml, facilitating viral load monitoring within a wide dynamic range. In 598 genotyped samples, quantified by Bayer VERSANT 3.0 branched DNA (bDNA), X-tail-based viral loads were highly concordant with bDNA for all genotypes. Correlation coefficients between bDNA and X-tail NAT, for genotypes 1-6, were: 0.92, 0.85, 0.95, 0.91, 0.95, and 0.96, respectively; X-tail-based viral loads deviated by more than 0.5 log10 from 5'-NCR-based viral loads in only 12% of samples (maximum deviation, 0.85 log10). The successful introduction of X-tail NAT in a Brazilian laboratory confirmed the practical stability and robustness of the X-tail-based protocol. The assay was implemented at low reaction costs (US$8.70 per sample), short turnover times (2.5 h for up to 96 samples), and without technical difficulties.ConclusionThis study indicates a way to fundamentally improve HCV viral load monitoring and infection screening. Our prototype assay can serve as a template for a new generation of viral load assays. Additionally, to our knowledge this study provides the first open protocol to permit industry-grade HCV detection and quantification in resource-limited settings.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The imprints of domestication and breed development on the genomes of livestock likely differ from those of companion animals. A deep draft sequence assembly of shotgun reads from a single Hereford female and comparative sequences sampled from six additional breeds were used to develop probes to interrogate 37,470 single-nucleotide polymorphisms (SNPs) in 497 cattle from 19 geographically and biologically diverse breeds. These data show that cattle have undergone a rapid recent decrease in effective population size from a very large ancestral population, possibly due to bottlenecks associated with domestication, selection, and breed formation. Domestication and artificial selection appear to have left detectable signatures of selection within the cattle genome, yet the current levels of diversity within breeds are at least as great as exists within humans.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The genome-wide identification of both morbid genes, i.e., those genes whose mutations cause hereditary human diseases, and druggable genes, i.e., genes coding for proteins whose modulation by small molecules elicits phenotypic effects, requires experimental approaches that are time-consuming and laborious. Thus, a computational approach which could accurately predict such genes on a genome-wide scale would be invaluable for accelerating the pace of discovery of causal relationships between genes and diseases as well as the determination of druggability of gene products.Results: In this paper we propose a machine learning-based computational approach to predict morbid and druggable genes on a genome-wide scale. For this purpose, we constructed a decision tree-based meta-classifier and trained it on datasets containing, for each morbid and druggable gene, network topological features, tissue expression profile and subcellular localization data as learning attributes. This meta-classifier correctly recovered 65% of known morbid genes with a precision of 66% and correctly recovered 78% of known druggable genes with a precision of 75%. It was than used to assign morbidity and druggability scores to genes not known to be morbid and druggable and we showed a good match between these scores and literature data. Finally, we generated decision trees by training the J48 algorithm on the morbidity and druggability datasets to discover cellular rules for morbidity and druggability and, among the rules, we found that the number of regulating transcription factors and plasma membrane localization are the most important factors to morbidity and druggability, respectively.Conclusions: We were able to demonstrate that network topological features along with tissue expression profile and subcellular localization can reliably predict human morbid and druggable genes on a genome-wide scale. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing morbidity and druggability.
Resumo:
Cultivated peanut (Arachis hypogaea) is an important crop, widely grown in tropical and subtropical regions of the world. It is highly susceptible to several biotic and abiotic stresses to which wild species are resistant. As a first step towards the introgression of these resistance genes into cultivated peanut, a linkage map based on microsatellite markers was constructed, using an F-2 population obtained from a cross between two diploid wild species with AA genome (A. duranensis and A. stenosperma). A total of 271 new microsatellite markers were developed in the present study from SSR-enriched genomic libraries, expressed sequence tags (ESTs), and by data-mining sequences available in GenBank. of these, 66 were polymorphic for cultivated peanut. The 271 new markers plus another 162 published for peanut were screened against both progenitors and 204 of these (47.1%) were polymorphic, with 170 codominant and 34 dominant markers. The 80 codominant markers segregating 1:2:1 (P < 0.05) were initially used to establish the linkage groups. Distorted and dominant markers were subsequently included in the map. The resulting linkage map consists of 11 linkage groups covering 1,230.89 cM of total map distance, with an average distance of 7.24 cM between markers. This is the first microsatellite-based map published for Arachis, and the first map based on sequences that are all currently publicly available. Because most markers used were derived from ESTs and genomic libraries made using methylation-sensitive restriction enzymes, about one-third of the mapped markers are genic. Linkage group ordering is being validated in other mapping populations, with the aim of constructing a transferable reference map for Arachis.
Resumo:
The data mining of Eucalyptus ESTs genome finds four clusters (EGCEST2257E11.g, EGBGRT3213F11.g, and EGCCFB1223H11.g) from highly conservative 14-3-3 protein family which modulates a wide variety of cellular processes. Multiple alignments were built from twenty four sequences of 14-3-3 proteins searched into the GenBank databases and into the four pools of Eucalyptus genome programs. The alignment has shown two regions highly conservative on the sequences corresponding to the motifs of protein phosphorylation and nine highly conservative regions on the sequence corresponding to the linkage regions of alpha helices structure based on three dimensional of dimer functional structure. The differences of amino acid into the structural and functional domains of 14-3-3 plant protein were identified and can explain the functional diversity of different isoforms. The phylogenic protein trees were built by the maximum parsimony and neighborjoining procedures of Clustal X alignments and PAUP software for phylogenic analysis.
Resumo:
Plant responses against pathogens cause up-and downward shifts in gene expression. To identify differentially expressed genes in a plant-virus interaction, susceptible tomato plants were inoculated with the potyvirus Pepper yellow mosaic virus (PepYMV) and a subtractive library was constructed from inoculated leaves at 72 h after inoculation. Several genes were identified as upregulated, including genes involved in plant defense responses (e. g., pathogenesis-related protein 5), regulation of the cell cycle (e. g., cytokinin-repressed proteins), signal transduction (e. g., CAX-interacting protein 4, SNF1 kinase), transcriptional regulators (e. g., WRKY and SCARECROW transcription factors), stress response proteins (e. g., Hsp90, DNA-J, 20S proteasome alpha subunit B, translationally controlled tumor protein), ubiquitins (e. g., polyubiquitin, ubiquitin activating enzyme 2), among others. Downregulated genes were also identified, which likewise display identity with genes involved in several metabolic pathways. Differential expression of selected genes was validated by macroarray analysis and quantitative real-time polymerase chain reaction. The possible roles played by some of these genes in the viral infection cycle are discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In higher eukaryotes, the 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units composed of a coding region and a non-transcribed spacer sequence (NTS). These tandem arrays can be found on either one or more chromosome pairs. 5S rDNA copies from the tilapia fish. Oreochromis niloticus, were cloned and the nucleotide sequences of the coding region and of the non-transcribed spacer were deter-mined. Moreover, the genomic organization of the 5S rDNA tandem repeats was investigated by fluorescence in situ hybridization (FISH) and Southern blot hybridization. Two 5S rDNA classes, one consisting of 1.4-kb repeats and another one with 0.5-kb repeats were identified and designated 5S rDNA type I and type II, respectively, An inverted 5S rRNA gene and a 5S rRNA putative pseudogene were also identified inside the tandem repeats of 5S rDNA type I. FISH permitted the visualization of the 5S rRNA genes at three chromosome loci, one of them consisting of arrays of the 5S rDNA type I, and the two others corresponding to arrays of the 5S rDNA type II. The two classes of the 5S rDNA. The presence of pseudogenes, and the inverted genes observed in the O. niloticus genome might be a consequence of the intense dynamics of the evolution of these tandem repeat elements. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
5S rDNA sequences present an intense dynamism and have proved to be valuable as genetic markers to distinguish closed related species and also in the understanding of the evolutionary dynamic of repetitive sequences in the genomes. In order to identify patterns of 5S rDNA organization and their evolution in the genome of fish species, such genomic segment was investigated in the tilapias Oreochromis niloticus and Tilapia rendalli, and in the hybrid O. urolepis hornorum x O. mossambicus. A dual 5S rDNA system was identified in the three analyzed tilapia samples. Although each 5S rDNA class was conserved among the three samples, a distinct 5S rDNA genome organization pattern could be evidenced for each sample. The presence of a dual 5S rDNA system seems to be a general trait among non-related teleost fish orders, suggesting that evolutionary events of duplication have occurred before the divergence of the main groups of teleost fishes.
Resumo:
The Nile tilapia (Oreochromis niloticus) has received increasing scientific interest over the past few decades for two reasons: first, tilapia is an enormously important species in aquaculture worldwide, especially in regions where there is a chronic shortage of animal protein; and second, this teleost fish belongs to the fascinating group of cichlid fishes that have undergone a rapid and extensive radiation of much interest to evolutionary biologists. Currently, studies based on physical and genetic mapping of the Nile tilapia genome offer the best opportunities for applying genomics to such diverse questions and issues as phylogeography, isolation of quantitative trait loci involved in behaviour, morphology, and disease, and overall improvement of aquacultural stocks. In this review, we have integrated molecular cytogenetic data for the Nile tilapia describing the chromosomal location of the repetitive DNA sequences, satellite DNAs, telomeres, 45S and 5S rDNAs, and the short and long interspersed nucleotide elements [short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINEs)], and provide the beginnings of a physical genome map for this important teleost fish. (C) 2004 Elsevier B.V. All rights reserved.