881 resultados para Generalized Least Squares Estimation
Resumo:
It is convenient and effective to solve nonlinear problems with a model that has a linear-in-the-parameters (LITP) structure. However, the nonlinear parameters (e.g. the width of Gaussian function) of each model term needs to be pre-determined either from expert experience or through exhaustive search. An alternative approach is to optimize them by a gradient-based technique (e.g. Newton’s method). Unfortunately, all of these methods still need a lot of computations. Recently, the extreme learning machine (ELM) has shown its advantages in terms of fast learning from data, but the sparsity of the constructed model cannot be guaranteed. This paper proposes a novel algorithm for automatic construction of a nonlinear system model based on the extreme learning machine. This is achieved by effectively integrating the ELM and leave-one-out (LOO) cross validation with our two-stage stepwise construction procedure [1]. The main objective is to improve the compactness and generalization capability of the model constructed by the ELM method. Numerical analysis shows that the proposed algorithm only involves about half of the computation of orthogonal least squares (OLS) based method. Simulation examples are included to confirm the efficacy and superiority of the proposed technique.
Resumo:
We present extensive spectroscopic time series observations of the multiperiodic, rapidly rotating, delta Scuti star tau Pegasi. Information about the oscillations is contained within the patterns of line-profile variation of the star's blended absorption-line spectrum. We introduce the new technique of Doppler deconvolution with which to extract these patterns by modeling the intrinsic stellar spectrum and the broadening functions for each spectrum in the time series. Frequencies and modes of oscillation are identified from the variations using the technique of Fourier-Doppler imaging and a two-dimensional least-squares cleaning algorithm. We find a rich mode spectrum with degrees up to l = 20 and with frequencies below about 35 cycles day-1. Those modes with the largest amplitudes have frequencies that lie within a narrow band. We conclude that the observed spectrum can be explained if the modes of tau Peg propagate in the prograde direction with l ~= |m| and with frequencies that are about equal in the corotating frame of the star. We discuss the implications of these results for the prospect of delta Scuti seismology.
Resumo:
The ammonia oxidation reaction on supported polycrystalline platinum catalyst was investigated in an aluminum-based microreactor. An extensive set of reactions was included in the chemical reactor modeling to facilitate the construction of a kinetic model capable of satisfactory predictions for a wide range of conditions (NH3 partial pressure, 0.01-0.12 atm; O-2 partial pressure, 0.10-0.88 atm; temperature, 523-673 K; contact time, 0.3-0.7 ms). The elementary surface reactions used in developing the mechanism were chosen based on the literature data concerning ammonia oxidation on a Pt catalyst. Parameter estimates for the kinetic model were obtained using multi-response least squares regression analysis using the isothermal plug-flow reactor approximation. To evaluate the model, the behavior of a microstructured reactor was simulated by means of a complete Navier-Stokes model accounting for the reactions on the catalyst surface and the effect of temperature on the physico-chemical properties of the reacting mixture. In this way, the effect of the catalytic wall temperature non-uniformity and the effect of a boundary layer on the ammonia conversion and selectivity were examined. After further optimization of appropriate kinetic parameters, the calculated selectivities and product yields agree very well with the values actually measured in the microreactor. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
omega Ori (HD37490, HR1934) is a Be star known to have presented variations. In order to investigate the nature and origin of its short-term and mid-term variability, a study is performed of several spectral lines (Halpha, Hdelta, HeI 4471, 4713, 4921, 5876, 6678, CII 4267, 6578, 6583, Mg II 4481, Si III 4553 and Si II 6347), based on 249 high signal-to-noise high-resolution spectra taken with 8 telescopes over 22 consecutive nights during the MuSiCoS (Multi SIte COntinuous Spectroscopy) campaign in November-December 1998. The stellar parameters are revisited and the projected rotational velocity (v sin i = 179 km s(-1)) is redetermined using several methods. With the MuSiCoS 98 dataset, a time series analysis of line-profile variations (LPVs) is performed using the Restricted Local Cleanest (RLC) algorithm and a least squares method. The behaviour of the velocity of the centroid of the lines, the equivalent widths and the apparent vsini for several lines, as well as Violet and Red components of photospheric lines affected by emission (red He i lines, Si II 6347, CII 6578, 6583) are analyzed. The non-radial pulsation (NRP) model is examined using phase diagrams and the Fourier-Doppler Imaging (FDI) method. The LPVs are consistent with a NRP mode with l = 2 or 3, \m\ = 2 with frequency 1.03 cd(-1). It is shown that an emission line outburst occurred in the middle of the campaign. Two scenarios are proposed to explain the behaviour of a dense cloud, temporarily orbiting around the star with a frequency 0.46 c d(-1), in relation to the outburst.
Resumo:
A study was undertaken to examine a range of sample preparation and near infrared reflectance spectroscopy (NIPS) methodologies, using undried samples, for predicting organic matter digestibility (OMD g kg(-1)) and ad libitum intake (g kg(-1) W-0.75) of grass silages. A total of eight sample preparation/NIRS scanning methods were examined involving three extents of silage comminution, two liquid extracts and scanning via either external probe (1100-2200 nm) or internal cell (1100-2500 nm). The spectral data (log 1/R) for each of the eight methods were examined by three regression techniques each with a range of data transformations. The 136 silages used in the study were obtained from farms across Northern Ireland, over a two year period, and had in vivo OMD (sheep) and ad libitum intake (cattle) determined under uniform conditions. In the comparisons of the eight sample preparation/scanning methods, and the differing mathematical treatments of the spectral data, the sample population was divided into calibration (n = 91) and validation (n = 45) sets. The standard error of performance (SEP) on the validation set was used in comparisons of prediction accuracy. Across all 8 sample preparation/scanning methods, the modified partial least squares (MPLS) technique, generally minimized SEP's for both OMD and intake. The accuracy of prediction also increased with degree of comminution of the forage and with scanning by internal cell rather than external probe. The system providing the lowest SEP used the MPLS regression technique on spectra from the finely milled material scanned through the internal cell. This resulted in SEP and R-2 (variance accounted for in validation set) values of 24 (g/kg OM) and 0.88 (OMD) and 5.37 (g/kg W-0.75) and 0.77 (intake) respectively. These data indicate that with appropriate techniques NIRS scanning of undried samples of grass silage can produce predictions of intake and digestibility with accuracies similar to those achieved previously using NIRS with dried samples. (C) 1998 Elsevier Science B.V.
Resumo:
A study combining high resolution mass spectrometry (liquid chromatography-quadrupole time-of-flight-mass spectrometry, UPLC-QTof-MS) and chemometrics for the analysis of post-mortem brain tissue from subjects with Alzheimer’s disease (AD) (n = 15) and healthy age-matched controls (n = 15) was undertaken. The huge potential of this metabolomics approach for distinguishing AD cases is underlined by the correct prediction of disease status in 94–97% of cases. Predictive power was confirmed in a blind test set of 60 samples, reaching 100% diagnostic accuracy. The approach also indicated compounds significantly altered in concentration following the onset of human AD. Using orthogonal partial least-squares discriminant analysis (OPLS-DA), a multivariate model was created for both modes of acquisition explaining the maximum amount of variation between sample groups (Positive Mode-R2 = 97%; Q2 = 93%; root mean squared error of validation (RMSEV) = 13%; Negative Mode-R2 = 99%; Q2 = 92%; RMSEV = 15%). In brain extracts, 1264 and 1457 ions of interest were detected for the different modes of acquisition (positive and negative, respectively). Incorporation of gender into the model increased predictive accuracy and decreased RMSEV values. High resolution UPLC-QTof-MS has not previously been employed to biochemically profile post-mortem brain tissue, and the novel methods described and validated herein prove its potential for making new discoveries related to the etiology, pathophysiology, and treatment of degenerative brain disorders.
Resumo:
The techniques of principal component analysis (PCA) and partial least squares (PLS) are introduced from the point of view of providing a multivariate statistical method for modelling process plants. The advantages and limitations of PCA and PLS are discussed from the perspective of the type of data and problems that might be encountered in this application area. These concepts are exemplified by two case studies dealing first with data from a continuous stirred tank reactor (CSTR) simulation and second a literature source describing a low-density polyethylene (LDPE) reactor simulation.
Resumo:
Objective
To investigate the effect of fast food consumption on mean population body mass index (BMI) and explore the possible influence of market deregulation on fast food consumption and BMI.
Methods
The within-country association between fast food consumption and BMI in 25 high-income member countries of the Organisation for Economic Co-operation and Development between 1999 and 2008 was explored through multivariate panel regression models, after adjustment for per capita gross domestic product, urbanization, trade openness, lifestyle indicators and other covariates. The possible mediating effect of annual per capita intake of soft drinks, animal fats and total calories on the association between fast food consumption and BMI was also analysed. Two-stage least squares regression models were conducted, using economic freedom as an instrumental variable, to study the causal effect of fast food consumption on BMI.
Findings
After adjustment for covariates, each 1-unit increase in annual fast food transactions per capita was associated with an increase of 0.033 kg/m2 in age-standardized BMI (95% confidence interval, CI: 0.013–0.052). Only the intake of soft drinks – not animal fat or total calories – mediated the observed association (β: 0.030; 95% CI: 0.010–0.050). Economic freedom was an independent predictor of fast food consumption (β: 0.27; 95% CI: 0.16–0.37). When economic freedom was used as an instrumental variable, the association between fast food and BMI weakened but remained significant (β: 0.023; 95% CI: 0.001–0.045).
Conclusion
Fast food consumption is an independent predictor of mean BMI in high-income countries. Market deregulation policies may contribute to the obesity epidemic by facilitating the spread of fast food.
Resumo:
Features analysis is an important task which can significantly affect the performance of automatic bacteria colony picking. Unstructured environments also affect the automatic colony screening. This paper presents a novel approach for adaptive colony segmentation in unstructured environments by treating the detected peaks of intensity histograms as a morphological feature of images. In order to avoid disturbing peaks, an entropy based mean shift filter is introduced to smooth images as a preprocessing step. The relevance and importance of these features can be determined in an improved support vector machine classifier using unascertained least square estimation. Experimental results show that the proposed unascertained least square support vector machine (ULSSVM) has better recognition accuracy than the other state-of-the-art techniques, and its training process takes less time than most of the traditional approaches presented in this paper.
Resumo:
BACKGROUND: It is now common for individuals to require dialysis following the failure of a kidney transplant. Management of complications and preparation for dialysis are suboptimal in this group. To aid planning, it is desirable to estimate the time to dialysis requirement. The rate of decline in the estimated glomerular filtration rate (eGFR) may be used to this end.
METHODS: This study compared the rate of eGFR decline prior to dialysis commencement between individuals with failing transplants and transplant-naïve patients. The rate of eGFR decline was also compared between transplant recipients with and without graft failure. eGFR was calculated using the four-variable MDRD equation with rate of decline calculated by least squares linear regression.
RESULTS: The annual rate of eGFR decline in incident dialysis patients with graft failure exceeded that of the transplant-naïve incident dialysis patients. In the transplant cohort, the mean annual rate of eGFR decline prior to graft failure was 7.3 ml/min/1.73 m(2) compared to 4.8 ml/min/1.73 m(2) in the transplant-naïve group (p < 0.001) and 0.35 ml/min/1.73 m(2) in recipients without graft failure (p < 0.001). Factors associated with eGFR decline were recipient age, decade of transplantation, HLA mismatch and histological evidence of chronic immunological injury.
CONCLUSIONS: Individuals with graft failure have a rapid decline in eGFR prior to dialysis commencement. To improve outcomes, dialysis planning and management of chronic kidney disease complications should be initiated earlier than in the transplant-naïve population.
Resumo:
Tropical peatlands represent globally important carbon sinks with a unique biodiversity and are currently threatened by climate change and human activities. It is now imperative that proxy methods are developed to understand the ecohydrological dynamics of these systems and for testing peatland development models. Testate amoebae have been used as environmental indicators in ecological and palaeoecological studies of peatlands, primarily in ombrotrophic Sphagnum-dominated peatlands in the mid- and high-latitudes. We present the first ecological analysis of testate amoebae in a tropical peatland, a nutrient-poor domed bog in western (Peruvian) Amazonia. Litter samples were collected from different hydrological microforms (hummock to pool) along a transect from the edge to the interior of the peatland. We recorded 47 taxa from 21 genera. The most common taxa are Cryptodifflugia oviformis, Euglypha rotunda type, Phryganella acropodia, Pseudodifflugia fulva type and Trinema lineare. One species found only in the southern hemisphere, Argynnia spicata, is present. Arcella spp., Centropyxis aculeata and Lesqueresia spiralis are indicators of pools containing standing water. Canonical correspondence analysis and non-metric multidimensional scaling illustrate that water table depth is a significant control on the distribution of testate amoebae, similar to the results from mid- and high-latitude peatlands. A transfer function model for water table based on weighted averaging partial least-squares (WAPLS) regression is presented and performs well under cross-validation (r 2apparent=0.76,RMSE=4.29;r2jack=0.68,RMSEP=5.18. The transfer function was applied to a 1-m peat core, and sample-specific reconstruction errors were generated using bootstrapping. The reconstruction generally suggests near-surface water tables over the last 3,000 years, with a shift to drier conditions at c. cal. 1218-1273 AD
Resumo:
Brain tissue from so-called Alzheimer's disease (AD) mouse models has previously been examined using H-1 NMR-metabolomics, but comparable information concerning human AD is negligible. Since no animal model recapitulates all the features of human AD we undertook the first H-1 NMR-metabolomics investigation of human AD brain tissue. Human post-mortem tissue from 15 AD subjects and 15 age-matched controls was prepared for analysis through a series of lyophilised, milling, extraction and randomisation steps and samples were analysed using H-1 NMR. Using partial least squares discriminant analysis, a model was built using data obtained from brain extracts. Analysis of brain extracts led to the elucidation of 24 metabolites. Significant elevations in brain alanine (15.4 %) and taurine (18.9 %) were observed in AD patients (p ≤ 0.05). Pathway topology analysis implicated either dysregulation of taurine and hypotaurine metabolism or alanine, aspartate and glutamate metabolism. Furthermore, screening of metabolites for AD biomarkers demonstrated that individual metabolites weakly discriminated cases of AD [receiver operating characteristic (ROC) AUC <0.67; p < 0.05]. However, paired metabolites ratios (e.g. alanine/carnitine) were more powerful discriminating tools (ROC AUC = 0.76; p < 0.01). This study further demonstrates the potential of metabolomics for elucidating the underlying biochemistry and to help identify AD in patients attending the memory clinic
Resumo:
This paper proposes an efficient learning mechanism to build fuzzy rule-based systems through the construction of sparse least-squares support vector machines (LS-SVMs). In addition to the significantly reduced computational complexity in model training, the resultant LS-SVM-based fuzzy system is sparser while offers satisfactory generalization capability over unseen data. It is well known that the LS-SVMs have their computational advantage over conventional SVMs in the model training process; however, the model sparseness is lost, which is the main drawback of LS-SVMs. This is an open problem for the LS-SVMs. To tackle the nonsparseness issue, a new regression alternative to the Lagrangian solution for the LS-SVM is first presented. A novel efficient learning mechanism is then proposed in this paper to extract a sparse set of support vectors for generating fuzzy IF-THEN rules. This novel mechanism works in a stepwise subset selection manner, including a forward expansion phase and a backward exclusion phase in each selection step. The implementation of the algorithm is computationally very efficient due to the introduction of a few key techniques to avoid the matrix inverse operations to accelerate the training process. The computational efficiency is also confirmed by detailed computational complexity analysis. As a result, the proposed approach is not only able to achieve the sparseness of the resultant LS-SVM-based fuzzy systems but significantly reduces the amount of computational effort in model training as well. Three experimental examples are presented to demonstrate the effectiveness and efficiency of the proposed learning mechanism and the sparseness of the obtained LS-SVM-based fuzzy systems, in comparison with other SVM-based learning techniques.
Resumo:
Many AMS systems can measure 14C, 13C and 12C simultaneously thus providing δ13C values which can be used for fractionation normalization without the need for offline 13C /12C measurements on isotope ratio mass spectrometers (IRMS). However AMS δ13C values on our 0.5MV NEC Compact Accelerator often differ from IRMS values on the same material by 4-5‰ or more. It has been postulated that the AMS δ13C values account for the potential graphitization and machine induced fractionation, in addition to natural fractionation, but how much does this affect the 14C ages or F14C? We present an analysis of F14C as a linear least squares fit with AMS δ13C results for several of our secondary standards. While there are samples for which there is an obvious correlation between AMS δ13C and F14C, as quantified with the calculated probability of no correlation, we find that the trend lies within one standard deviation of the variance on our F14C measurements. Our laboratory produces both zinc and hydrogen reduced graphite, and we present our results for each type. Additionally, we show the variance on our AMS δ13C measurements of our secondary standards.
Resumo:
In this paper, a multiloop robust control strategy is proposed based on H∞ control and a partial least squares (PLS) model (H∞_PLS) for multivariable chemical processes. It is developed especially for multivariable systems in ill-conditioned plants and non-square systems. The advantage of PLS is to extract the strongest relationship between the input and the output variables in the reduced space of the latent variable model rather than in the original space of the highly dimensional variables. Without conventional decouplers, the dynamic PLS framework automatically decomposes the MIMO process into multiple single-loop systems in the PLS subspace so that the controller design can be simplified. Since plant/model mismatch is almost inevitable in practical applications, to enhance the robustness of this control system, the controllers based on the H∞ mixed sensitivity problem are designed in the PLS latent subspace. The feasibility and the effectiveness of the proposed approach are illustrated by the simulation results of a distillation column and a mixing tank process. Comparisons between H∞_PLS control and conventional individual control (either H∞ control or PLS control only) are also made