986 resultados para GAS MODEL
Resumo:
The aim of this study is to quantify the mass transfer velocity using turbulence parameters from simultaneous measurements of oxygen concentration fields and velocity fields. The surface divergence model was considered in more detail, using data obtained for the lower range of beta (surface divergence). It is shown that the existing models that use the divergence concept furnish good predictions for the transfer velocity also for low values of beta, in the range of this study. Additionally, traditional conceptual models, such as the film model, the penetration-renewal model, and the large eddy model, were tested using the simultaneous information of concentration and velocity fields. It is shown that the film and the surface divergence models predicted the mass transfer velocity for all the range of the equipment Reynolds number used here. The velocity measurements showed viscosity effects close to the surface, which indicates that the surface was contaminated with some surfactant. Considering the results, this contamination can be considered slight for the mass transfer predictions. (C) 2009 American Institute of Chemical Engineers AIChE J, 56: 2005-2017; 2010
Resumo:
The main objective of this work was to investigate three packing materials (polyurethane foam, sugar-cane bagasse, and coconut fibre) for biofiltration of a gaseous mixture containing hydrogen sulphide (H(2)S). Mixed cultures were obtained from two sources, aerated submerged biofilters and activated sludge, and were utilised as inoculums. Biofilters reached 100% removal efficiency after two clays of operation. The empty bed residence time was 495 for each of the biofilters. The reactors were operated simultaneously, and the inlet concentrations of H(2)S varied between 184 and 644 ppmv during the long-term continuous operation of the biofilters (100 clays). Average removal efficiencies remained above 99.3%, taking into consideration the entire period of operation. Average elimination capacities reached by the biofilters packed with polyurethane foam, coconut fibre, and sugarcane bagasse were in the range of 17.8-66.6; 18.9-68.8, and 18.7-72.9g m(-3) h(-1), respectively. Finally, we concluded that the packing materials tested in this work are appropriate for the long-term biofiltration of hydrogen sulphide. (C) 2010 Elsevier B.V. All rights reserved.
The effect of the generation and handling in the acquired electrostatic charge in airborne particles
Resumo:
The measurement of the charge distribution in laboratory generated aerosols particles was carried out. Four cases of electrostatic charge acquisition by aerosol particles were evaluated. In two of these cases. the charges acquired by the particles were naturally derived from the aerosol generation procedure itself, without using any additional charging method. Ill the other two cases, a corona charger and an impact charger were utilized as Supplementary methods for charge generation. Two types of aerosol generators were used in the dispersion of particles in the gas Stream: the vibrating orifice generator TSI model 3450 and the rotating plate generator TSI model 3433. In the vibrating orifice generator. a Solution of methylene blue Was used and the generated particles were mono-dispersed. Different mono-aerosols were generated with particle diameters varying from 6.0 x 10(-6) m to 1.4 x 10(-5) m. In the rotating plate generator, a poly-dispersed phosphate rock concentrate with Stokes mean diameter of 1.30 x 10(-6) m and size range between 1.5 x 10(-7) m and 8.0 x 10(-6) m Was utilized as powder material in all tests. In the tests performed with the mono-dispersed particles. the median charges of the particles varied between -3.0 x 10-(16) C and -5.0 x 10(-18) degrees C and a weak dependence between particle size and charge was observed. The particles were predominantly negatively charged. In the tests with the poly-dispersed particles the median charges varied fairly linearly with the particle diameter and were negative. The order of magnitude of the results obtained is in accordance with data reported in the literature. The charge distribution, in this case, was wider, so that an appreciable amount of particles were positively charged. The relative spread of the distribution varied with the charging method. It was also noticed that the corona charger acted very effectively in charging the particles. (C) 2008 Elsevier BY. All rights reserved.
Resumo:
Vibration-based energy harvesting has been investigated by several researchers over the last decade. The goal in this research field is to power small electronic components by converting the waste vibration energy available in their environment into electrical energy. Recent literature shows that piezoelectric transduction has received the most attention for vibration-to-electricity conversion. In practice, cantilevered beams and plates with piezoceramic layers are employed as piezoelectric energy harvesters. The existing piezoelectric energy harvester models are beam-type lumped parameter, approximate distributed parameter and analytical distributed parameter solutions. However, aspect ratios of piezoelectric energy harvesters in several cases are plate-like and predicting the power output to general (symmetric and asymmetric) excitations requires a plate-type formulation which has not been covered in the energy harvesting literature. In this paper. an electromechanically coupled finite element (FE) plate model is presented for predicting the electrical power output of piezoelectric energy harvester plates. Generalized Hamilton`s principle for electroelastic bodies is reviewed and the FE model is derived based on the Kirchhoff plate assumptions as typical piezoelectric energy harvesters are thin structures. Presence of conductive electrodes is taken into account in the FE model. The predictions of the FE model are verified against the analytical solution for a unimorph cantilever and then against the experimental and analytical results of a bimorph cantilever with a tip mass reported in the literature. Finally, an optimization problem is solved where the aluminum wing spar of an unmanned air vehicle (UAV) is modified to obtain a generator spar by embedding piezoceramics for the maximum electrical power without exceeding a prescribed mass addition limit. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The characteristics of municipal solid waste (MSW) play a key role in many aspects of waste disposal facilities and landfills. Because most of a landfill is made up of MSW, the overall stability of the landfill slopes are governed by the strength parameters and physical properties of the MSW. These parameters are also important in interactions involving the waste body and the landfill structures: cover liner, leachate and gas collection systems. On the other hand, the composition of the waste, which affects the geotechnical behavior of the MSW, is dependent on a variety of factors such as climate, disposal technology, the culture and habits of the local community. It is therefore essential that the design and stability evaluations of landfills in each region be performed based on the local conditions and the geotechnical characteristic of the MSW. The Bandeirantes Landfill, BL, in Sao Paulo and the Metropolitan Center Landfill, MCL, in Salvador, are among the biggest landfills in Brazil. These two disposal facilities have been used for the development of research involving waste mechanics in recent years. Considerable work has been made in the laboratory and in the field to evaluate parameters such as water and organic contents, composition, permeability, and shear strength. This paper shows and analyzes the results of tests performed on these two landfills. The authors believe that these results could be a good reference for certain aspects and geotechnical properties of MSW materials in countries with similar conditions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S. Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S. Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee la. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO(2)e/ha, while our analysis based on the information provided by other authors resulted in 2406 kg CO(2)e/ha, on average. The Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009:34:2905-13] study does not report emissions. When compared to diesel on a energy basis, avoided emissions due to the use of biodiesel account for 80 g CO(2)e/MJ. Thus, avoided life Cycle emissions associated with the use of biodiesel yield a net reduction of greenhouse gas emissions. We also assessed the carbon balance between a palm tree plantation, including displaced emissions from diesel, and a natural ecosystem. Considering the carbon balance outcome plus life cycle emissions the payback time for a tropical forest is 39 years. The result published by Gibbs et al. (2008) [Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, et al., Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters 2008;3:10], which ignores life cycle emissions, determined a payback range for biodiesel production between 30 and 120 years. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the procedures of the analysis Of Pollutant gases, as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) emitted by engines, using high-resolution gas chromatography (HRGC). In a broad sense, CI engine burning diesel was compared with B10 and a drastic reduction was observed in the emissions of the aromatic compounds by using B10. Especially for benzene, the reduction of concentrations occurs on the level of about 19.5%. Although a concentration value below 1 mu g ml(-1) has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An updated flow pattern map was developed for CO2 on the basis of the previous Cheng-Ribatski-Wojtan-Thome CO2 flow pattern map [1,2] to extend the flow pattern map to a wider range of conditions. A new annular flow to dryout transition (A-D) and a new dryout to mist flow transition (D-M) were proposed here. In addition, a bubbly flow region which generally occurs at high mass velocities and low vapor qualities was added to the updated flow pattern map. The updated flow pattern map is applicable to a much wider range of conditions: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m(2) s, heat fluxes from 1.8 to 46 kW/m(2) and saturation temperatures from -28 to +25 degrees C (reduced pressures from 0.21 to 0.87). The updated flow pattern map was compared to independent experimental data of flow patterns for CO2 in the literature and it predicts the flow patterns well. Then, a database of CO2 two-phase flow pressure drop results from the literature was set up and the database was compared to the leading empirical pressure drop models: the correlations by Chisholm [3], Friedel [4], Gronnerud [5] and Muller-Steinhagen and Heck [6], a modified Chisholm correlation by Yoon et al. [7] and the flow pattern based model of Moreno Quiben and Thome [8-10]. None of these models was able to predict the CO2 pressure drop data well. Therefore, a new flow pattern based phenomenological model of two-phase flow frictional pressure drop for CO2 was developed by modifying the model of Moreno Quiben and Thome using the updated flow pattern map in this study and it predicts the CO2 pressure drop database quite well overall. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Corresponding to the updated flow pattern map presented in Part I of this study, an updated general flow pattern based flow boiling heat transfer model was developed for CO2 using the Cheng-Ribatski-Wojtan-Thome [L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes, Int. J. Heat Mass Transfer 49 (2006) 4082-4094; L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, Erratum to: ""New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside tubes"" [Heat Mass Transfer 49 (21-22) (2006) 4082-4094], Int. J. Heat Mass Transfer 50 (2007) 391] flow boiling heat transfer model as the starting basis. The flow boiling heat transfer correlation in the dryout region was updated. In addition, a new mist flow heat transfer correlation for CO2 was developed based on the CO2 data and a heat transfer method for bubbly flow was proposed for completeness sake. The updated general flow boiling heat transfer model for CO2 covers all flow regimes and is applicable to a wider range of conditions for horizontal tubes: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m(2) s, heat fluxes from 1.8 to 46 kW/m(2) and saturation temperatures from -28 to 25 degrees C (reduced pressures from 0.21 to 0.87). The updated general flow boiling heat transfer model was compared to a new experimental database which contains 1124 data points (790 more than that in the previous model [Cheng et al., 2006, 2007]) in this study. Good agreement between the predicted and experimental data was found in general with 71.4% of the entire database and 83.2% of the database without the dryout and mist flow data predicted within +/-30%. However, the predictions for the dryout and mist flow regions were less satisfactory due to the limited number of data points, the higher inaccuracy in such data, scatter in some data sets ranging up to 40%, significant discrepancies from one experimental study to another and the difficulties associated with predicting the inception and completion of dryout around the perimeter of the horizontal tubes. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Chloride attack in marine environments or in structures where deicing salts are used will not always show profiles with concentrations that decrease from the external surface to the interior of the concrete. Some profiles show an increase in chloride concentrations from when a peak is formed. This type of profile must be analyzed in a different way from the traditional model of Fick`s second law to generate more precise service life models. A model for forecasting the penetration of chloride ions as a function of time for profiles having formed a peak. To confirm the efficiency of this model, it is necessary to observe the behavior of a chloride profile with peak in a specific structure over a period of time. To achieve this, two chloride profiles with different ages (22 and 27 years) were extracted from the same structure. The profile obtained from the 22-year sample was used to estimate the chloride profile at 27 years using three models: a) the traditional model using Fick`s second law and extrapolating the value of C(S)-external surface chloride concentration; b) the traditional model using Fick`s second law and shifting the x-axis to the peak depth; c) the previously proposed model. The results from these models were compared with the actual profile measured in the 27-year sample and the results were analyzed. The model was presented with good precision for this study of case, requiring to be tested with other structures in use.
Resumo:
A large percentage of pile caps support only one column, and the pile caps in turn are supported by only a few piles. These are typically short and deep members with overall span-depth ratios of less than 1.5. Codes of practice do not provide uniform treatment for the design of these types of pile caps. These members have traditionally been designed as beams spanning between piles with the depth selected to avoid shear failures and the amount of longitudinal reinforcement selected to provide sufficient flexural capacity as calculated by the engineering beam theory. More recently, the strut-and-tie method has been used for the design of pile caps (disturbed or D-region) in which the load path is envisaged to be a three-dimensional truss, with compressive forces being supported by concrete compressive struts between the column and piles and tensile forces being carried by reinforcing steel located between piles. Both of these models have not provided uniform factors of safety against failure or been able to predict whether failure will occur by flexure (ductile mode) or shear (fragile mode). In this paper, an analytical model based on the strut-and-tie approach is presented. The proposed model has been calibrated using an extensive experimental database of pile caps subjected to compression and evaluated analytically for more complex loading conditions. It has been proven to be applicable across a broad range of test data and can predict the failures modes, cracking, yielding, and failure loads of four-pile caps with reasonable accuracy.
Resumo:
This article presents a tool for the allocation analysis of complex systems of water resources, called AcquaNetXL, developed in the form of spreadsheet in which a model of linear optimization and another nonlinear were incorporated. The AcquaNetXL keeps the concepts and attributes of a decision support system. In other words, it straightens out the communication between the user and the computer, facilitates the understanding and the formulation of the problem, the interpretation of the results and it also gives a support in the process of decision making, turning it into a clear and organized process. The performance of the algorithms used for solving the problems of water allocation was satisfactory especially for the linear model.
Resumo:
A mathematical model, numerical simulations and stability and flow regime maps corresponding to severe slugging in pipeline riser systems, are presented. In the simulations air and water were used as flowing fluids. The mathematical model considers continuity equations for liquid and gas phases, with a simplified momentum equation for the mixture, neglecting inertia. A drift-flux model, evaluated for the local conditions in the riser, is used as a closure law. The developed model predicts the location of the liquid accumulation front in the pipeline and the liquid level in the riser, so it is possible to determine which type of severe slugging occurs in the system. The numerical procedure is convergent for different nodalizations. A comparison is made with experimental results corresponding to a catenary riser, showing very good results for slugging cycle and stability and flow regime maps. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a series of depositions of titanium nitride (TiN) films on M2 and D2 steel substrates were conducted in a Triode Magnetron Sputtering chamber. The temperature; gas flow and pressure were kept constant during each run. The substrate bias was either decreased or increased in a sequence of steps. Residual stress measurements were later conducted through the grazing X-ray diffraction method. Different incident angles were used in order to change the penetration depth and to obtain values of residual stress at different film depths. A model described by Dolle was adapted as an attempt to calculate the values of residual stress at each incident angle as a function of the value from each individual layer. Stress results indicated that the decrease in bias voltage during the deposition has produced compressive residual stress gradients through the film thickness. On the other hand, much less pronounced gradients were found in one of the films deposited with increasing bias voltage. (C) 2010 Elsevier B.V. All rights reserved.