803 resultados para Gás natural veicular : Rio Grande do Sul
Resumo:
Nowadays, where the market competition requires products with better quality and a constant search for cost savings and a better use of raw materials, the research for more efficient control strategies becomes vital. In Natural Gas Processin Units (NGPUs), as in the most chemical processes, the quality control is accomplished through their products composition. However, the chemical composition analysis has a long measurement time, even when performed by instruments such as gas chromatographs. This fact hinders the development of control strategies to provide a better process yield. The natural gas processing is one of the most important activities in the petroleum industry. The main economic product of a NGPU is the liquefied petroleum gas (LPG). The LPG is ideally composed by propane and butane, however, in practice, its composition has some contaminants, such as ethane and pentane. In this work is proposed an inferential system using neural networks to estimate the ethane and pentane mole fractions in LPG and the propane mole fraction in residual gas. The goal is to provide the values of these estimated variables in every minute using a single multilayer neural network, making it possibly to apply inferential control techniques in order to monitor the LPG quality and to reduce the propane loss in the process. To develop this work a NGPU was simulated in HYSYS R software, composed by two distillation collumns: deethanizer and debutanizer. The inference is performed through the process variables of the PID controllers present in the instrumentation of these columns. To reduce the complexity of the inferential neural network is used the statistical technique of principal component analysis to decrease the number of network inputs, thus forming a hybrid inferential system. It is also proposed in this work a simple strategy to correct the inferential system in real-time, based on measurements of the chromatographs which may exist in process under study
Resumo:
The vehicles are the main mobile sources of carbon monoxide (CO) and unburned hydrocarbons (HC) released into the atmosphere. In the last years the increment of the fleet of vehicles in the municipal district of Natal-RN it is contributing to the increase of the emissions of those pollutants. The study consisted of a statistical analysis of the emissions of CO and HC of a composed sample for 384 vehicles with mechanization Gasoline/CNG or Alcohol/Gasoline/CNG of the municipal district of Natal-RN. The tests were accomplished in vehicles submitted to Vehicular Safety's Inspection, in the facilities of INSPETRANS, Organism of Vehicular Inspection. An partial gases analyzer allowed to measure, for each vehicle, the levels of CO and HC in two conditions of rotation of the motor (900 and 2500 rpm). The statistical analysis accomplished through the STATISTICA software revealed a sensitive reduction in the efficiency of the converters catalytic after 6 years of use with emission average it is of 0,78% of CO and 156 (ppm) of HC, Which represents approximately 4 (four) times the amount of CO and the double of HC in comparison with the newest vehicles. The result of a Student s t-test, suggests strongly that the average of the emissions of HC (152 ppm), at 900 rpm, is 40% larger than at 2500 rpm, for the motor without load. This result reveals that the efficiency of the catalytic conversion is limited kinetically in low engine speeds. The Study also ends that when comparing the emissions of CO and HC considering the influence of the fuels, it was verified that although the emissions of CO starting from CNG are 62% smaller than arising from the gasoline, there are not significant differences among the emissions of HC originating from of CNG and of the gasoline. In synthesis, the results place the current criteria of vehicular inspection, for exhaust gases, in doubt, leading the creation of emission limits of pollutant more rigorous, because the efficiency of the converters catalytic is sensibly reduced starting from 6 years of use. It is also raised the possibility of modifications in the test conditions adopted by the current norms, specifically in the speed engine, have seen that in the condition without load the largest emission indexes were registered in slow march. That fact that allows to suggest the dismissal of the tests in high speed engine, reducing the time of inspection in half and generating economy of fuel
Resumo:
Traditional ceramics have an important role in the economy of Rio Grande do Norte. The local industries manufacture over 50 million shingles a month, corresponding to 60% of their overall production. As a result of processing flaws, roughly 20% of the production must be discarded, since little or no use has been envisaged for such fired components. Therefore, the use of this kind of residue, especially in the composition of other ceramic materials, comes as an interesting option from the economical and environmental point of view. In this scenario, the objective of the present study was to assess the effect of the addition of fired shingle waste in the composition of porcelainized stoneware tiles. To that end, two porcelainized stoneware tiles compositions were initially prepared. Subsequently, contents from 10 to 30% of roofing tiles chamote were added to each one of them. All raw materials and grog were characterized by FRX, XRD, and thermal analysis. The ceramics were fired using natural gas for 30 min at different temperatures, i.e. 1150, 1200 and 1250ºC, and fully characterized. The addition of roofing tiles chamote resulted in composition with superior properties compared to additive-free compositions. Porcelainized stoneware tiles products that fulfill required standards for practical applications were achieved
Resumo:
Natural gas, although basically composed by light hydrocarbons, also presents in its composition gaseous contaminants such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). Hydrogen sulfide, which commonly occurs in oil and gas exploration and production activities, besides being among the gases that are responsible by the acid rain and greenhouse effect, can also cause serious harm to health, leading even to death, and damages to oil and natural gas pipelines. Therefore, the removal of hydrogen sulfide will significantly reduce operational costs and will result in oil with best quality to be sent to refinery, thereby resulting in economical, environmental, and social benefits. These factors highlight the need for the development and improvement of hydrogen sulfide sequestrating agents to be used in the oil industry. Nowadays there are several procedures for hydrogen sulfide removal from natural gas used by the petroleum industry. However, they produce derivatives of amines that are harmful to the distillation towers, form insoluble precipitates that cause pipe clogging and produce wastes of high environmental impact. Therefore, the obtaining of a stable system, in inorganic or organic reaction media, that is able to remove hydrogen sulfide without forming by-products that affect the quality and costs of natural gas processing, transport and distribution is of great importance. In this context, the evaluation of the kinetics of H2S removal is a valuable procedure for the treatment of natural gas and disposal of the byproducts generated by the process. This evaluation was made in an absorption column packed with Raschig ring, where natural gas with H2S passes through a stagnant solution, being the contaminant absorbed by it. The content of H2S in natural gas in column output was monitored by an H2S analyzer. The comparison between the obtained curves and the study of the involved reactions have not only allowed to determine the efficiency and mass transfer controlling step of the involved processes but also make possible to effect a more detailed kinetic study and evaluate the commercial potential of each reagent
Resumo:
This dissertation aims to assess the representativeness of the manual chilled mirror analyzer (model II Chanscope 13-1200-CN-2) used for the determination of condensed hydrocarbons of natural gas compared to the indirect methods, based on thermodynamic models equation of state. Additionally, it has been implemented in this study a model for calculating the dew point of natural gas. The proposed model is a modification of the equation of state of Peng-Robinson admits that the groups contribution as a strategy to calculate the binary interaction parameters kij (T) temperature dependence. Experimental data of the work of Brown et al. (2007) were used to compare the responses of the dew point of natural gas with thermodynamic models contained in the UniSim process simulator and the methodology implemented in this study. Then two natural gas compositions were studied, the first being a standard gas mixture gravimetrically synthesized and, second, a mixture of processed natural gas. These experimental data were also compared with the results presented by UniSim process simulator and the thermodynamic model implemented. However, data from the manual analysis results indicated significant differences in temperature, these differences were attributed to the formation of dew point of water, as we observed the appearance of moisture on the mirror surface cooling equipment
Resumo:
In energy systems, the balance of entrances, exits and losses are fundamental to rationalize the energy consumption, independently of the source (sun, natural gas, wind, water, firewood or oil). This estimate is important so much in the phase of project of the facilities, as in the exploration or operation. In the project phase it indicates the energy needs of the process and the contribution of the energy in the cost of the product and the capacity of storage of the fuel and in the operation phase it allows to evaluate the use of the energy in the process of it burns, showing the weak points that should suffer intervention to improve the efficiency. With this tool, it can be implemented routines of calculation of thermal balances in ovens of it burns of structural ceramic, in way to generate an optimized mathematical model for application in the current and promising structural ceramic brazilian industry. The ceramic oven in study is located in the metropolitan area of Natal (Rio Grande do Norte) and it is a continuous oven of the type wagons tunnel, converted of firewood for natural gas and it produces blocks of red ceramic. The energy balance was applied in the oven tunnel before and after the conversion and made the comparisons of the energy efficiencies (it burns to the firewood and it burns to natural gas), what showed that the gaseous fuel is more efficient when we burn structural ceramic in ovens tunnels. When we burn natural gas, the requested energy is smaller and better used. Tests were accomplished in the burned product that showed the best quality of the burned brick with natural gas. That quality improvement makes possible to accomplish new interventions for the most rational use of the energy in the oven tunnel of the Ceramic in study and in the industries of structural ceramic of the whole Brazil, that need control tools of burning and of quality
Resumo:
During natural gas processing, water removal is considered as a fundamental step in that combination of hydrocarbons and water favors the formation of hydrates. The gas produced in the Potiguar Basin (Brazil) presents high water content (approximately 15000 ppm) and its dehydration is achieved via absorption and adsorption operations. This process is carried out at the Gas Treatment Unit (GTU) in Guamaré (GMR), in the State of Rio Grande do Norte. However, it is a costly process, which does not provide satisfactory results when water contents as low as 0.5 ppm are required as the exit of the GTU. In view of this, microemulsions research is regarded as an alternative to natural gas dehydration activities. Microemulsions can be used as desiccant fluids because of their unique proprieties, namely solubilization enhancement, reduction in interfacial tensions and large interfacial area between continuous and dispersed phases. These are actually important parameters to ensure the efficiency of an absorption column. In this work, the formulation of the desiccant fluid was determined via phases diagram construction, employing there nonionic surfactants (RDG 60, UNTL L60 and AMD 60) and a nonpolar fluid provided by Petrobras GMR (Brazil) typically comprising low-molecular weight liquid hydrocarbons ( a solvent commonly know as aguarrás ). From the array of phases diagrams built, four representative formulations have been selected for providing better results: 30% RDG 60-70% aguarrás; 15% RDG 60-15% AMD 60-70% aguarrás, 30% UNTL L60-70% aguarrás, 15% UNTL L60-15% AMD 60-70% aguarrás. Since commercial natural gas is already processed, and therefore dehydrated, it was necessary to moister some sample prior to all assays. It was then allowed to cool down to 13ºC and interacted with wet 8-12 mesh 4A molecular sieve, thus enabling the generation of gas samples with water content (approximately 15000 ppm). The determination of the equilibrium curves was performed based on the dynamic method, which stagnated liquid phase and gas phase at a flow rate of 200 mL min-1. The hydrodynamic study was done with the aim of established the pressure drop and dynamic liquid hold-up. This investigation allowed are to set the working flow rates at 840 mL min-1 for the gas phase and 600 mLmin-1 for the liquid phase. The mass transfer study indicated that the system formed by UNTL L60- turpentine-natural gas the highest value of NUT
Resumo:
Natural gas, although basically composed by light hydrocarbons, also presents contaminant gases in its composition, such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). The H2S, which commonly occurs in oil and gas exploration and production activities, causes damages in oil and natural gas pipelines. Consequently, the removal of hydrogen sulfide gas will result in an important reduction in operating costs. Also, it is essential to consider the better quality of the oil to be processed in the refinery, thus resulting in benefits in economic, environmental and social areas. All this facts demonstrate the need for the development and improvement in hydrogen sulfide scavengers. Currently, the oil industry uses several processes for hydrogen sulfide removal from natural gas. However, these processes produce amine derivatives which can cause damage in distillation towers, can cause clogging of pipelines by formation of insoluble precipitates, and also produce residues with great environmental impact. Therefore, it is of great importance the obtaining of a stable system, in inorganic or organic reaction media, able to remove hydrogen sulfide without formation of by-products that can affect the quality and cost of natural gas processing, transport, and distribution steps. Seeking the study, evaluation and modeling of mass transfer and kinetics of hydrogen removal, in this study it was used an absorption column packed with Raschig rings, where the natural gas, with H2S as contaminant, passed through an aqueous solution of inorganic compounds as stagnant liquid, being this contaminant gas absorbed by the liquid phase. This absorption column was coupled with a H2S detection system, with interface with a computer. The data and the model equations were solved by the least squares method, modified by Levemberg-Marquardt. In this study, in addition to the water, it were used the following solutions: sodium hydroxide, potassium permanganate, ferric chloride, copper sulfate, zinc chloride, potassium chromate, and manganese sulfate, all at low concentrations (»10 ppm). These solutions were used looking for the evaluation of the interference between absorption physical and chemical parameters, or even to get a better mass transfer coefficient, as in mixing reactors and absorption columns operating in counterflow. In this context, the evaluation of H2S removal arises as a valuable procedure for the treatment of natural gas and destination of process by-products. The study of the obtained absorption curves makes possible to determine the mass transfer predominant stage in the involved processes, the mass transfer volumetric coefficients, and the equilibrium concentrations. It was also performed a kinetic study. The obtained results showed that the H2S removal kinetics is greater for NaOH. Considering that the study was performed at low concentrations of chemical reagents, it was possible to check the effect of secondary reactions in the other chemicals, especially in the case of KMnO4, which shows that your by-product, MnO2, acts in H2S absorption process. In addition, CuSO4 and FeCl3 also demonstrated to have good efficiency in H2S removal
Resumo:
Goat breeding in the state of Rio Grande do Norte, Brazil has promising economic possibilities, with the proper handling of the natural resources. The introduction of specialized animals has been one of the ways used to improve herd genetics and increase productivity. However, climate has been one of the regional factors that most interferes with the adaptation of the new genetic prevalence resulting from the introduction of exotic breeds, because in their country of origin, the air temperature during most of the year is lower than the animals body temperature. With this in mind, the aim of this study was to characterize behavioral, physiological and morphological profiles and milk production of female Saanen goats belonging to different genetic groups raised in the semi-arid region of Rio Grande do Norte in Northeast Brazil. The study was conducted in the city of Lages (5° 42 00 S and 36° 14 41 W). We used 25 lactating female Saanen goats, distributed into 3 genetic groups: 5 purebred animals, 11 three-quarter bred and 9 half-bred. Behavioral observations were made over three consecutive days in the months of August and September, between 09:00 and 11:30h, when the animals were grazing. Physiological and meteorological data were recorded in the last three days of June, July, August and September at 05:00h and at 16:00h. In the semi-intensive breeding system, the animals from different genetic groups were similar in both field behavior and physiological response patterns. Although the purebred goats had longer hair, they did not show symptoms of thermal discomfort. Their white hair helped to reflect the short wavelength rays and thus eliminate those at the longer wave lengths. We concluded that the animals raised in the semi-intensive milk production system in this study seem to have adapted to the climatic conditions of the semi-arid region of Rio Grande do Norte, Brazil
Resumo:
A fundamental analysis on Behavioral Ecology is the construction of Activities Budget, which can be defined as the quantification of the time that each animal uses in activities that are important for its survival and reproduction. Initially developed for theoretical studies about Optimal Foraging, the construction of Activities Budgets has recently being used for analyses in Conservation Biology. However, the measurement of behavior through an adequate methodology that allows the comparison between different samples is a challenge for researchers in the area of Ethology. This problem is even bigger for the students of cetaceans behavior due to the difficulty of visualization of these animals. The present work deals with two aspects of the specialized literature on cetaceans: i) it explores possible variations of results in quantification of behavioral states decurrent of the application of different methods of data collection, and ii) it describes the activity budget of a population of Sotalia guianensis that inhabits coastal waters, south Rio Grande do Norte. The results showed that the use different methods of data collection result in significant differences, but of small scale, in the quantification of the behavioral frequency. The activity budget of Sotalia in the area here analyzed was similar to that described for other populations of this species inhabiting typically estuarine habitats. Tide and day-hour did not influence the dolphin s behavior, however, significant differences were found related to the position of the animals within the area. These results are discussed considering the dietary and behavioral flexibility of the species, contributing to the scientific knowledge and offering information that will be useful in comparative studies and for analyses on the determination of areas for species conservation
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
This work consists on the study of two important problems arising from the operations of petroleum and natural gas industries. The first problem the pipe dimensioning problem on constrained gas distribution networks consists in finding the least cost combination of diameters from a discrete set of commercially available ones for the pipes of a given gas network, such that it respects minimum pressure requirements at each demand node and upstream pipe conditions. On its turn, the second problem the piston pump unit routing problem comes from the need of defining the piston pump unit routes for visiting a number of non-emergent wells in on-shore fields, i.e., wells which don t have enough pressure to make the oil emerge to surface. The periodic version of this problem takes into account the wells re-filling equation to provide a more accurate planning in the long term. Besides the mathematical formulation of both problems, an exact algorithm and a taboo search were developed for the solution of the first problem and a theoretical limit and a ProtoGene transgenetic algorithm were developed for the solution of the second problem. The main concepts of the metaheuristics are presented along with the details of their application to the cited problems. The obtained results for both applications are promising when compared to theoretical limits and alternate solutions, either relative to the quality of the solutions or to associated running time
Resumo:
Este trabalho apresenta um algoritmo transgenético híbrido para a solução de um Problema de Configuração de uma Rede de Distribuição de Gás Natural. O problema da configuração dessas redes requer a definição de um traçado por onde os dutos devem ser colocados para atender aos clientes. É estudada neste trabalho uma maneira de conectar os clientes em uma rede com arquitetura em forma de árvore. O objetivo é minimizar o custo de construção da rede, mesmo que para isso alguns clientes que não proporcionam lucros deixem de ser atendidos. Esse problema pode ser formulado computacionalmente através do Problema de Steiner com Prêmios. Este é um problema de otimização combinatória da classe dos NPÁrduos. Este trabalho apresenta um algoritmo heurístico para a solução do problema. A abordagem utilizada é chamada de Algoritmos Transgenéticos, que se enquadram na categoria dos algoritmos evolucionários. Para a geração de soluções inicias é utilizado um algoritmo primaldual, e pathrelinking é usado como intensificador
Resumo:
The need for sustainability in the exploitation of natural resources in coastal areas has been out in recent years, as well as the social and cultural sustainability of traditional communities in these regions. Coastal and estuarine wild areas are influenced directly or indirectly by a set of human activities such as artisanal fishing. Therefore, there is a demand for an integrated design of these areas and according to the landing values, a pattern of unsustainable development of national marine fishing activity. The study was conducted in the coastal community of Praia da Pipa, Tibau do Sul municipality, RN, between june 2009 and june 2010 and aimed to characterize the fishery performed, its socio-economic strategies and fishing areas, as well as to identify ichthyofauna, to assess the sustainability of the major resources and to identify cultural traits related to artisanal fisheries, their problems and prospects; linking tradition and the present fishing activity carried out in the community. For this study, a total of 67 structured interviews were collected, including qualitative and quantitative data. A total of 133 fish landings and direct observations were performed. Informants were identified according to one of the following categories: fishermen, vessel masters and members of the local population with offspring. Applications SPSS 10.0, Paint.Ink and Microsoft Office Excel 2007 were used for tabulation and analysis of results. Local fishermen are, on average, 25 years fishing, have 40 years old and the average monthly income is up to 03 minimum wages. The local fleet consists of 20 vessels, that uses different line sizes and types of networks, operating in 21 fishing grounds and showing a reduction in the vessel numbers by 66% in the last decade. We recorded 76 species of fish, captured by the local fleet and the top 5 were quantitatively analyzed serra spanish mackarel (Scomberomorus brasiliensis), little tunny (Euthynnus alleteratus), yellowtail snapper (Ocyurus chrysurus), red snapper (Lutjanus analis) and common snook (Centropomus undecimalis), accounting for 46,5% of production in the period. The capture of these species was composed mostly of adults. Data analysis showed a significant decrease of the local fishing activity over the last decade due to the weakness displayed by the political-social category, the devaluation of local knowledge and the emergence of new sources of income through increased tourism. The characteristics of the fishing community suggest it to pass through significant changes as the appreciation of their cultural and traditional aspects. We identified a tendency to sustainability of main species caught, suggesting that public policies to be adopted locally comply with the current characteristics of fishing undertaken in the community and knowledge of fishermen related to the environment, allowing environmental, as well as social and cultural sustainability of the community involved.