993 resultados para Fused deposition modeling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluated eight hypsometric models to represent tree height-diameter relationship, using data obtained from the scaling of 118 trees and 25 inventory plots. Residue graphic analysis and percent deviation mean criteria, qui-square test precision, residual standard error between real and estimated heights and the graybill f test were adopted. The identity of the hypsometric models was also verified by applying the F(Ho) test on the plot data grouped to the scaling data. It was concluded that better accuracy can be obtained by using the model prodan, with h and d1,3 data measured in 10 trees by plots grouped into these scaling data measurements of even-aged forest stands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, general approach is devised to model electrolyte sorption from aqueous solutions on solid materials. Electrolyte sorption is often considered as unwanted phenomenon in ion exchange and its potential as an independent separation method has not been fully explored. The solid sorbents studied here are porous and non-porous organic or inorganic materials with or without specific functional groups attached on the solid matrix. Accordingly, the sorption mechanisms include physical adsorption, chemisorption on the functional groups and partition restricted by electrostatic or steric factors. The model is tested in four Cases Studies dealing with chelating adsorption of transition metal mixtures, physical adsorption of metal and metalloid complexes from chloride solutions, size exclusion of electrolytes in nano-porous materials and electrolyte exclusion of electrolyte/non-electrolyte mixtures. The model parameters are estimated using experimental data from equilibrium and batch kinetic measurements, and they are used to simulate actual single-column fixed-bed separations. Phase equilibrium between the solution and solid phases is described using thermodynamic Gibbs-Donnan model and various adsorption models depending on the properties of the sorbent. The 3-dimensional thermodynamic approach is used for volume sorption in gel-type ion exchangers and in nano-porous adsorbents, and satisfactory correlation is obtained provided that both mixing and exclusion effects are adequately taken into account. 2-Dimensional surface adsorption models are successfully applied to physical adsorption of complex species and to chelating adsorption of transition metal salts. In the latter case, comparison is also made with complex formation models. Results of the mass transport studies show that uptake rates even in a competitive high-affinity system can be described by constant diffusion coefficients, when the adsorbent structure and the phase equilibrium conditions are adequately included in the model. Furthermore, a simplified solution based on the linear driving force approximation and the shrinking-core model is developed for very non-linear adsorption systems. In each Case Study, the actual separation is carried out batch-wise in fixed-beds and the experimental data are simulated/correlated using the parameters derived from equilibrium and kinetic data. Good agreement between the calculated and experimental break-through curves is usually obtained indicating that the proposed approach is useful in systems, which at first sight are very different. For example, the important improvement in copper separation from concentrated zinc sulfate solution at elevated temperatures can be correctly predicted by the model. In some cases, however, re-adjustment of model parameters is needed due to e.g. high solution viscosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. It is characterized by a severe loss of substantia nigra dopaminergic neurons leading to dopamine depletion in the striatum. PD affects movement, producing motor symptoms such as rigidity, tremor and bradykinesia. Non-motor symptoms include autonomic dysfunction, neurobehavioral problems and cognitive impairment, which may lead to dementia. The pathophysiological basis of cognitive impairment and dementia in PD is unclear. The aim of this thesis was to study the pathophysiological basis of cognitive impairment and dementia in PD. We evaluated the relation between frontostriatal dopaminergic dysfunction and the cognitive symptoms in PD patients with [18F]Fdopa PET. We also combined [C]PIB and [18F]FDG PET and magnetic resonance imaging in PD patients with and without dementia. In addition, we analysed subregional striatal [18F]Fdopa PET data to find out whether a simple ratio approach would reliably separate PD patients from healthy controls. The impaired dopaminergic function of the frontostriatal regions was related to the impairment in cognitive functions, such as memory and cognitive processing in PD patients. PD patients with dementia showed an impaired glucose metabolism but not amyloid deposition in the cortical brain regions, and the hypometabolism was associated with the degree of cognitive impairment. PD patients had atrophy, both in the prefrontal cortex and in the hippocampus, and the hippocampal atrophy was related to impaired memory. A single 15-min scan 75 min after a tracer injection seemed to be sufficient for separating patients with PD from healthy controls in a clinical research environment. In conclusion, the occurrence of cognitive impairment and dementia in PD seems to be multifactorial and relates to changes, such as reduced dopaminergic activity, hypometabolism, brain atrophy and rarely to amyloid accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current industrial atomic layer deposition (ALD) processes are almost wholly confined to glass or silicon substrates. For many industrial applications, deposition on polymer substrates will be necessary. Current deposition processes are also typically carried out at temperatures which are too high for polymers. If deposition temperatures in ALD can be reduced to the level applicable for polymers, it will open new interesting areas and applications for polymeric materials. The properties of polymers can be improved for example by coatings with functional and protective properties. Although the ALD has shown its capability to operate at low temperatures suitable for polymer substrates, there are other issues related to process efficiency and characteristics of different polymers where new knowledge will assist in developing industrially conceivable ALD processes. Lower deposition temperature in ALD generally means longer process times to facilitate the self limiting film growth mode characteristic to ALD. To improve process efficiency more reactive precursors are introduced into the process. For example in ALD oxide processes these can be more reactive oxidizers, such as ozone and oxygen radicals, to substitute the more conventionally used water. Although replacing water in the low temperature ALD with ozone or plasma generated oxygen radicals will enable the process times to be shortened, they may have unwanted effects both on the film growth and structure, and in some cases can form detrimental process conditions for the polymer substrate. Plasma assistance is a very promising approach to improve the process efficiency. The actual design and placement of the plasma source will have an effect on film growth characteristics and film structure that may retard the process efficiency development. Due to the fact that the lifetime of the radicals is limited, it requires the placement of the plasma source near to the film growth region. Conversely this subjects the substrate to exposure byother plasma species and electromagnetic radiation which sets requirements for plasma conditions optimization. In this thesis ALD has been used to modify, activate and functionalize the polymer surfaces for further improvement of polymer performance subject to application. The issues in ALD on polymers, both in thermal and plasma-assisted ALD will be further discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to evaluate the prognostic value of microscopic parameters of asymptomatic leaves of Clusia hilariana Schltdl. subjected to particulate deposition of iron (2.14 mg cm-2 day-1) for 45 consecutive days. Samples of young and expanded leaves without symptoms were collected and subjected to light and scanning electron microscopy techniques. The height of the epidermal cells on both surfaces of the leaf and the thickness of the hypodermis, the chlorophyll parenchyma, and the leaf blade were measured. Micromorphological injury occurred in the abaxial surface of young leaves and on both surfaces of expanded leaves. Erosion of the epicuticular wax and cuticle rupture were frequent on the adaxial surface, while on the abaxial surface of both leaves there was a loss of sinuosity on the anticlinal wall of the epidermal cells, stomatal deformity and obstruction. Micromorphometric alterations were seen in all leaf tissues except in the height of epidermic cells, probably due to the thick cuticle and prominent cuticular flanges. The highest difference in thickness of the leaf blade was seen in young leaves of plants subjected to SPMFe, indicating greater sensibility to particulate iron in comparison to the expanded leaves. The micromorphological and micromorphometric alterations in the leaf blade of Clusia hilariana Schltdl. showed the prognostic potential of these tools on the evaluation of impacts caused by the deposition of particulate matter, especially in the 'Restinga' natural vegetation, where the exposure is increasing due to the presence of iron ore industry in their surroundings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACTThis study presents a contribution to the modeling of a computer application employing a method of serviceability performance for unpaved roads, aiming the management of maintenance/restoration activities of the primary surface layer. The proposed methodology consisted of field inspections during dry (April to September) and rainy (October to March) periods, during which objective evaluations were performed to survey of defects and their densities and degrees of severity. To aid the functional classification of analyzed road sections and the determination of the defect with major influence on the serviceability of these roads, the method of serviceability performance proposed by Silva (2009)was implemented in the Visual Basic for Applications (VBA) language in Microsoft Excel software. With the use of the computer application proposed it was possible to identify among the defects analyzed in field, through the index of serviceability of the sampling unit per defect type (ISUdef), which one had the greatest influence on determining the relative serviceability index per road section (IST). The results allow us to conclude that the computer application Road achieved satisfactory results, since the objective evaluation criteria applied to road sections denotes consistency regarding their serviceability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT This study aimed to verify the differences in radiation intensity as a function of distinct relief exposure surfaces and to quantify these effects on the leaf area index (LAI) and other variables expressing eucalyptus forest productivity for simulations in a process-based growth model. The study was carried out at two contrasting edaphoclimatic locations in the Rio Doce basin in Minas Gerais, Brazil. Two stands with 32-year-old plantations were used, allocating fixed plots in locations with northern and southern exposure surfaces. The meteorological data were obtained from two automated weather stations located near the study sites. Solar radiation was corrected for terrain inclination and exposure surfaces, as it is measured based on the plane, perpendicularly to the vertical location. The LAI values collected in the field were used. For the comparative simulations in productivity variation, the mechanistic 3PG model was used, considering the relief exposure surfaces. It was verified that during most of the year, the southern surfaces showed lower availability of incident solar radiation, resulting in up to 66% losses, compared to the same surface considered plane, probably related to its geographical location and higher declivity. Higher values were obtained for the plantings located on the northern surface for the variables LAI, volume and mean annual wood increase, with this tendency being repeated in the 3PG model simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally limestone has been used for the flue gas desulfurization in fluidized bed combustion. Recently, several studies have been carried out to examine the use of limestone in applications which enable the removal of carbon dioxide from the combustion gases, such as calcium looping technology and oxy-fuel combustion. In these processes interlinked limestone reactions occur but the reaction mechanisms and kinetics are not yet fully understood. To examine these phenomena, analytical and numerical models have been created. In this work, the limestone reactions were studied with aid of one-dimensional numerical particle model. The model describes a single limestone particle in the process as a function of time, the progress of the reactions and the mass and energy transfer in the particle. The model-based results were compared with experimental laboratory scale BFB results. It was observed that by increasing the temperature from 850 °C to 950 °C the calcination was enhanced but the sulfate conversion was no more improved. A higher sulfur dioxide concentration accelerated the sulfation reaction and based on the modeling, the sulfation is first order with respect to SO2. The reaction order of O2 seems to become zero at high oxygen concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear programming models are effective tools to support initial or periodic planning of agricultural enterprises, requiring, however, technical coefficients that can be determined using computer simulation models. This paper, presented in two parts, deals with the development, application and tests of a methodology and of a computational modeling tool to support planning of irrigated agriculture activities. Part I aimed at the development and application, including sensitivity analysis, of a multiyear linear programming model to optimize the financial return and water use, at farm level for Jaíba irrigation scheme, Minas Gerais State, Brazil, using data on crop irrigation requirement and yield, obtained from previous simulation with MCID model. The linear programming model outputted a crop pattern to which a maximum total net present value of R$ 372,723.00 for the four years period, was obtained. Constraints on monthly water availability, labor, land and production were critical in the optimal solution. In relation to the water use optimization, it was verified that an expressive reductions on the irrigation requirements may be achieved by small reductions on the maximum total net present value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Techniques of evaluation of risks coming from inherent uncertainties to the agricultural activity should accompany planning studies. The risk analysis should be carried out by risk simulation using techniques as the Monte Carlo method. This study was carried out to develop a computer program so-called P-RISCO for the application of risky simulations on linear programming models, to apply to a case study, as well to test the results comparatively to the @RISK program. In the risk analysis it was observed that the average of the output variable total net present value, U, was considerably lower than the maximum U value obtained from the linear programming model. It was also verified that the enterprise will be front to expressive risk of shortage of water in the month of April, what doesn't happen for the cropping pattern obtained by the minimization of the irrigation requirement in the months of April in the four years. The scenario analysis indicated that the sale price of the passion fruit crop exercises expressive influence on the financial performance of the enterprise. In the comparative analysis it was verified the equivalence of P-RISCO and @RISK programs in the execution of the risk simulation for the considered scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work was evaluating the energetic demand of a seeder-fertilizer machine as a function of the type and handling of vegetal covering culture and of the fertilizer deposition shank depth. A Valtra BM100 tractor was used implemented to pull a high precision seeder-fertilizer machine with four ranks of seeding, spaced 0.9 m for maize culture. Experiment was conducted with design in randomized blocks in factorial plots, in the Laboratory of Machines and Agricultural Mechanization experimental area (LAMMA) of UNESP-Jaboticabal, using two covering cultures (black-mucuna and crotalaria), three handlings of this covering, two mechanical (straw crusher and roller knife) and one chemical (pulverization of herbicide), performed 120 days after seeding of covering cultures and three depths of fertilizer deposition shank, completing 18 treatments, with four repetitions, totaling 72 observations. Parameters of displacement speed, gliding, force on traction bar, peak force, power on pulling bar and fuel consumption were evaluated. It was possible to conclude that force on traction bar was less for depths of 0.11 and 0.14 m of fertilizer plough shank, the same occurring for peak force, power on traction bar and volumetric consumption. The specific consumption was lower at a depth of 0.17 m of fertilizer plough shank. Covering cultures and their handlings did not interfere in the performance of machines under inquiry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the forced-air cooling process of fruits occurs, besides the convective heat transfer, the mass transfer by evaporation. The energy need in the evaporation is taken from fruit that has its temperature lowered. In this study it has been proposed the use of empirical correlations for calculating the convective heat transfer coefficient as a function of surface temperature of the strawberry during the cooling process. The aim of this variation of the convective coefficient is to compensate the effect of evaporation in the heat transfer process. Linear and exponential correlations are tested, both with two adjustable parameters. The simulations are performed using experimental conditions reported in the literature for the cooling of strawberries. The results confirm the suitability of the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study aimed to determine an optimum angle for the nozzles axial-flow sprayers a deposition for better vertical distribution focused on cashew. In laboratory tests were conducted adjusting the angle of the nozzle axial-flow sprayers. The experimental design was randomized blocks in a 2x3 factorial with four replications. The treatment for this test were two settings (with and without the adjustment of the angles of the nozzles ) and tree application volumes 273, 699 and 954 L ha-¹.The study was conducted in an orchard of dwarf cashew, with eight years of age. It was concluded that the volumetric distribution profile showed better vertical distribution uniformity when the angles of the nozzles were regulated for the canopy, the adjustment of the angles of the nozzles for the canopy provided greater deposition of droplets, the increased volume of application resulted in higher depositions in the leaves of the crop.