997 resultados para Functional Units
Resumo:
SAMHD1 has recently been identified as an HIV-1 restriction factor operating in myeloid cells. As a countermeasure, the Vpx accessory protein from HIV-2 and certain lineages of SIV have evolved to antagonize SAMHD1 by inducing its ubiquitin-proteasome-dependent degradation. Here, we show that SAMHD1 experienced strong positive selection episodes during primate evolution that occurred in the Catarrhini ancestral branch prior to the separation between hominoids (gibbons and great apes) and Old World monkeys. The identification of SAMHD1 residues under positive selection led to mapping the Vpx-interaction domain of SAMHD1 to its C-terminal region. Importantly, we found that while SAMHD1 restriction activity toward HIV-1 is evolutionarily maintained, antagonism of SAMHD1 by Vpx is species-specific. The distinct evolutionary signature of SAMHD1 sheds light on the development of its antiviral specificity.
Resumo:
We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplished by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the artefactual concerns encountered in using heterologous systems are totally excluded.
Resumo:
Purpose:We analyzed the transcriptional activity of disease-causing NR2E3 mutant proteins in a heterologous system. NR2E3 belongs to the nuclear receptor superfamily of transcription factors, characterized by evolutionary-conserved DNA-binding (DBD) and ligand-binding (LBD) domains. NR2E3 acts in concert with the transcription factors CRX and NRL to repress cone-specific genes and activate rod-specific genes in rod photoreceptors. During development, NR2E3 is also required to suppress cone cell generation from retinal progenitor cells. In humans, mutations in NR2E3 have been associated with the recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS), the Goldman-Favre syndrome, and, more recently, with autosomal dominant retinitis pigmentosa (adRP). Methods:The different NR2E3 mutants were generated by QuickChangeR mutagenesis and analyzed by transfection in heterologous HEK293T cells. Results:In transactivation assays in HEK293T cells, the adRP-linked p.G56R mutant protein exhibited a more severe effect both in activation of a rhodopsin promoter reporter construct and in repression of M-opsin promoter reporter construct, than the ESCS-linked R76Q, R76W, G88V, R97H, R104Q, R104W mutants of the DBD. In contrast, the ESCS-linked p.R311Q mutant of the LBD behaved like the NR2E3 wild-type protein in these assays. By co-expressing the corepressors atrophin-1 and -2, a differential repression of the M-opsin promoter was observed in presence of the p.R311Q, p.R385P and p.M407K. Interestingly, corepressor expression also affected the activity of CRX, but not NRL, in both rhodopsin and M-opsin transactivation assays. Conclusions:Taken together, these in vitro results suggest a distinct disease mechanism for the adRP-linked mutation, but open the possibility of different mechanisms for the development of ESCS that is clinically characterized by important phenotypic variations.
Resumo:
We consider electroencephalograms (EEGs) of healthy individuals and compare the properties of the brain functional networks found through two methods: unpartialized and partialized cross-correlations. The networks obtained by partial correlations are fundamentally different from those constructed through unpartial correlations in terms of graph metrics. In particular, they have completely different connection efficiency, clustering coefficient, assortativity, degree variability, and synchronization properties. Unpartial correlations are simple to compute and they can be easily applied to large-scale systems, yet they cannot prevent the prediction of non-direct edges. In contrast, partial correlations, which are often expensive to compute, reduce predicting such edges. We suggest combining these alternative methods in order to have complementary information on brain functional networks.
Resumo:
Background: Microarray data is frequently used to characterize the expression profile of a whole genome and to compare the characteristics of that genome under several conditions. Geneset analysis methods have been described previously to analyze the expression values of several genes related by known biological criteria (metabolic pathway, pathology signature, co-regulation by a common factor, etc.) at the same time and the cost of these methods allows for the use of more values to help discover the underlying biological mechanisms. Results: As several methods assume different null hypotheses, we propose to reformulate the main question that biologists seek to answer. To determine which genesets are associated with expression values that differ between two experiments, we focused on three ad hoc criteria: expression levels, the direction of individual gene expression changes (up or down regulation), and correlations between genes. We introduce the FAERI methodology, tailored from a two-way ANOVA to examine these criteria. The significance of the results was evaluated according to the self-contained null hypothesis, using label sampling or by inferring the null distribution from normally distributed random data. Evaluations performed on simulated data revealed that FAERI outperforms currently available methods for each type of set tested. We then applied the FAERI method to analyze three real-world datasets on hypoxia response. FAERI was able to detect more genesets than other methodologies, and the genesets selected were coherent with current knowledge of cellular response to hypoxia. Moreover, the genesets selected by FAERI were confirmed when the analysis was repeated on two additional related datasets. Conclusions: The expression values of genesets are associated with several biological effects. The underlying mathematical structure of the genesets allows for analysis of data from several genes at the same time. Focusing on expression levels, the direction of the expression changes, and correlations, we showed that two-step data reduction allowed us to significantly improve the performance of geneset analysis using a modified two-way ANOVA procedure, and to detect genesets that current methods fail to detect.
Resumo:
Introduction: Indications for arthrodesis of the first metatarsophalangeal joint (MTP1) are commonly arthrosis (hallux rigidus), rheumatoid arthritis, failed hallux valgus surgery, severe hallux valgus, infectious arthritis, fractures and neuroarthropathies. Many reports focus on technical and radiological issues but few studies emphasize the functional outcome considering daily activities, sports and expectation of the patient. Method: We retrospectively reviewed the patients who underwent MTP1-arthrodesis from 2002 to 2005 in our institution. Clinical and radiological results were assessed but we specially focussed on the functional outcome. Scoring systems used were the SF-12, EQ-5D, PASI, FFI and AOFAS (10 points given to MTP1 mobility) scales. Results: 61 of 64 consecutive patients were evaluated. Female to male ratio was 49:15, mean age at surgery was 67 years, the average follow up was 29 month. Even if radiological consolidation was incomplete in 18 patients, all patients had a clinically stable and rigid arthrodesis. Mean AOFAS score was 87 (24-100) points at follow up. The FFI was 5.91% (0-66%). Patient satisfaction was excellent in 37 patients (60%), good in 18 (30%), fair in 5(8%) and poor in1 (2%). EQ- 5D was 0.7 (0.4-1).40 patients (66%) estimated their cosmetic result as excellent, 15 (25%) as good, 4(6%) as fair and 2 (3%)as poor. 10 patients (16%) had no shoe wear limitation , 48 (79%) had to wear comfortable shoes and 3 (5%) needed orthopaedic wearing. Professionally 34 patients (56%) had better performances, 18 (26%) had no change and 9 (18%) had aggravation of their capacities but this was due to other health reasons. In sports, 16 patients (26%) had better performances, 35 patients (57%) no change and 10 (17%) were worse as consequence of other health problems for 7. Finally, 56 patients (92%) would recommend the operation and 5 (8%) would not. Conclusion: Experience of clinical practice suggests that the idea of fusing the first MTP joint is initially frequently disregarded by the patients because they fear to be limited by a rigid forefoot. Our results show, in fact, that this procedure can be proposed for numerous pathological situations with the perspective of good to excellent outcome in terms of function and quality of life in the majority of cases.
Resumo:
PURPOSE OF REVIEW: Na,K-ATPase is an oligomeric protein composed of alpha subunits, beta subunits and FXYD proteins. The catalytic alpha subunit hydrolyzes ATP and transports the cations. Increasing experimental evidence suggest that beta subunits and FXYD proteins essentially contribute to the variable physiological needs of Na,K-ATPase function in different tissues. RECENT FINDINGS: Beta subunits have a crucial role in the structural and functional maturation of Na,K-ATPase and modulate its transport properties. The chaperone function of the beta subunit is essential, for example, in the formation of tight junctions and cell polarity. Recent studies suggest that beta subunits also have inherent functions, which are independent of Na,K-ATPase activity and which may be involved in cell-cell adhesiveness and in suppression of cell motility. As for FXYD proteins, they modulate Na,K-ATPase activity in a tissue-specific way, in some cases in close cooperation with posttranslational modifications such as phosphorylation. SUMMARY: A better understanding of the multiple functional roles of the accessory subunits of Na,K-ATPase is crucial to appraise their influence on physiological processes and their implication in pathophysiological states
Resumo:
Relative cognitive impairments are common along the schizophrenia spectrum reflecting potential psychopathological markers. Yet stress, a vulnerability marker in schizophrenia (including its spectrum), is likewise related to cognitive impairments. We investigated whether one such cognitive marker (attenuated functional hemispheric asymmetry) during stressful life periods might be linked to individuals' schizotypal features or rather to individuals' stress-related experiences and behaviours. A total of 58 students performed a left hemisphere dominant (lateralised lexical decisions) and right hemisphere dominant (sex decisions on composite faces) task. In order to account for individual differences in stress sensitivity we separated participants into groups of high or low cognitive reserve according to their average current marks. In addition, participants filled in questionnaires on schizotypy (short O-LIFE), perceived stress, stress response, and a newly adapted questionnaire that enquired about potential stress compensation behaviour (elevated substance use). The most important finding was that enhanced substance use and cognitive disorganisation contributed to a right and left hemisphere shift in language dominance, respectively. We discuss that (i) former reports on right hemisphere shifts in language dominance with positive schizotypy might be explained by an associated higher substance use and (ii) cognitive disorganisation relates to unstable cognitive functioning that depend on individuals' life circumstances, contributing to published reports on inconsistent laterality-schizotypy relationships.
Resumo:
Objectives: The aim of this study was to assess the concomitant perioperative procedures, the causes of nasolacrimal duct obstruction, the success rate, and the complications associated with endonasal dacryocystorhinostomy (ENDCR).Methods: In this single-center retrospective study, 98 patients underwent 104 ENDCRs between January 1994 and February 2006. There were 78 patients with 84 nasolacrimal duct obstructions who were included in this study.Results: The overall functional success rate with improvement in symptoms was 94.9% for primary surgery (59 of 84 obstructions) and 63.6% for salvage surgery after failure of primary surgery performed in another hospital (25 of 84 obstructions). The mean follow-up time was 36.8 +/- 17.11 months. Primary surgery showed better results, with a complete success rate of 93.2%, than did salvage surgery, with a success rate of only 68%. Persistent symptoms, despite an open rhinostomy, were found in 1.7% of patients with primary surgery and in 12% of those with salvage surgery. Failure of ENDCR was observed in 3.4% of patients after primary surgery and in 20% after salvage surgery. We encountered only minimal perioperative complications, and these were essentially related to lacrimal intubation.Conclusions: Because of the possibility of treating concomitant sinonasal disorders, the cosmetic advantages, and the excellent results, ENDCR represents the procedure of choice for treating nasolacrimal duct obstructions. The main challenge lies in the exact preoperative assessment, as well as postoperative evaluation in case of failure.
Resumo:
The autosomal recessive form of type I pseudohypoaldosteronism (PHA-I) is an inherited salt-losing syndrome resulting from diminution-of-function mutations in the 3 subunits of the epithelial Na+ channel (ENaC). A PHA-I stop mutation (alpha(R508stop)) of the ENaC alpha subunit is predicted to lack the second transmembrane domain and the intracellular COOH-terminus, regions of the protein involved in pore function. Nonetheless, we observed a measurable Na+ current in Xenopus laevis oocytes that coexpress the beta and gamma subunits with the truncated alpha subunit. The mutant alpha was coassembled with beta and gamma subunits and was present at the cell surface at a lower density, consistent with the lower Na+ current seen in oocytes with the truncated alpha subunit. The single-channel Na+ conductance for the mutant channel was only slightly decreased, and the appearance of the macroscopic currents was delayed by 48 hours with respect to wild-type. Our data suggest novel roles for the alpha subunit in the assembly and targeting of an active channel to the cell surface, and suggest that channel pores consisting of only the beta and gamma subunits can provide significant residual activity. This activity may be sufficient to explain the absence of a severe pulmonary phenotype in patients with PHA-I.
Resumo:
Vitamin A is necessary for normal embryonic development, but its role in the adult brain is poorly understood. Vitamin A derivatives, retinoids, are involved in a complex signaling pathway that regulates gene expression and, in the central nervous system, controls neuronal differentiation and neural tube patterning. Although a major functional implication of retinoic signaling has been repeatedly suggested in synaptic plasticity, learning and memory, sleep, schizophrenia, depression, Parkinson disease, and Alzheimer disease, the targets and the underlying mechanisms in the adult brain remain elusive.
Resumo:
The performance of the SAOP potential for the calculation of NMR chemical shifts was evaluated. SAOP results show considerable improvement with respect to previous potentials, like VWN or BP86, at least for the carbon, nitrogen, oxygen, and fluorine chemical shifts. Furthermore, a few NMR calculations carried out on third period atoms (S, P, and Cl) improved when using the SAOP potential
Resumo:
A procedure based on quantum molecular similarity measures (QMSM) has been used to compare electron densities obtained from conventional ab initio and density functional methodologies at their respective optimized geometries. This method has been applied to a series of small molecules which have experimentally known properties and molecular bonds of diverse degrees of ionicity and covalency. Results show that in most cases the electron densities obtained from density functional methodologies are of a similar quality than post-Hartree-Fock generalized densities. For molecules where Hartree-Fock methodology yields erroneous results, the density functional methodology is shown to yield usually more accurate densities than those provided by the second order Møller-Plesset perturbation theory
Resumo:
We report here a new empirical density functional that is constructed based on the performance of OPBE and PBE for spin states and SN 2 reaction barriers and how these are affected by different regions of the reduced gradient expansion. In a previous study [Swart, Sol̀, and Bickelhaupt, J. Comput. Methods Sci. Eng. 9, 69 (2009)] we already reported how, by switching between OPBE and PBE, one could obtain both the good performance of OPBE for spin states and reaction barriers and that of PBE for weak interactions within one and the same (SSB-sw) functional. Here we fine tuned this functional and include a portion of the KT functional and Grimme's dispersion correction to account for π- π stacking. Our new SSB-D functional is found to be a clear improvement and functions very well for biological applications (hydrogen bonding, π -π stacking, spin-state splittings, accuracy of geometries, reaction barriers)
Resumo:
A comparative systematic study of the CrO2F2 compound has been performed using different conventional ab initio methodologies and density functional procedures. Two points have been analyzed: first, the accuracy of results yielded by each method under study, and second, the computational cost required to reach such results. Weighing up both aspects, density functional theory has been found to be more appropriate than the Hartree-Fock (HF) and the analyzed post-HF methods. Hence, the structural characterization and spectroscopic elucidation of the full CrO2X2 series (X=F,Cl,Br,I) has been done at this level of theory. Emphasis has been given to the unknown CrO2I2 species, and specially to the UV/visible spectra of all four compounds. Furthermore, a topological analysis in terms of charge density distributions has revealed why the valence shell electron pair repulsion model fails in predicting the molecular shape of such CrO2X2 complexes