959 resultados para Fs lasers
Resumo:
La tesi illustra le funzionalita e l'architettura di Node.js elencando e analizzando le caratteristiche che lo rendono un framework vincente nella sfida che il web attuale pone. La tesi comprende l'analisi e la descrizione del lavoro svolto per creare una libreria HTTP/ File system, integrata nel sistema di sviluppo cloud proprietario: Instant Developer , funzionante sia su Node.JS che sui browser che supportano appieno le nuove API File system di HTML 5. Particolare attenzione viene riservata per la descrizione della struttura della libreria, pensata per permettere all'utente dell'IDE di utilizzarla indifferentemente su server/browser senza preoccuparsi di chiamare metodi diversi. Fs.js permette di operare con file/cartelle, richieste HTTP in modo semplificato rispetto alle API Ufficiali dei rispettivi ambienti.
Resumo:
The use of glasses doped with PbS nanocrystals as intracavity saturable absorbers for passive Q-switching and mode locking of c-cut Nd:Gd0.7Y0.3VO4, Nd:YVO4, and Nd:GdVO4 lasers is investigated. Q-switching yields pulses as short as 35 ns with an average output power of 435 mW at a repetition rate of 6–12 kHz at a pump power of 5–6 W. Mode locking through a combination of PbS nanocrystals and a Kerr lens results in 1.4 ps long pulses with an average output power of 255 mW at a repetition rate of 100 MHz.
Resumo:
Mass spectrometric analysis of elemental and isotopic compositions of several NIST standards is performed by a miniature laser ablation/ionisation reflectron-type time-of-flight mass spectrometer (LMS) using a fs-laser ablation ion source (775 nm, 190 fs, 1 kHz). The results of the mass spectrometric studies indicate that in a defined range of laser irradiance (fluence) and for a certain number of accumulations of single laser shot spectra, the measurements of isotope abundances can be conducted with a measurement accuracy at the per mill level and at the per cent level for isotope concentrations higher and lower than 100 ppm, respectively. Also the elemental analysis can be performed with a good accuracy. The LMS instrument combined with a fs-laser ablation ion source exhibits similar detection efficiency for both metallic and non-metallic elements. Relative sensitivity coefficients were determined and found to be close to one, which is of considerable importance for the development of standard-less instruments. Negligible thermal effects, sample damage and excellent characteristics of the fs-laser beam are thought to be the main reason for substantial improvement of the instrumental performance compared to other laser ablation mass spectrometers.
Resumo:
Refractive losses in laser-produced plasmas used as gain media are caused by electron density gradients, and limit the energy transport range. The pump pulse is thus deflected from the high-gain region and the short wavelength laser signal also steers away, causing loss of collimation. A Hohlraum used as a target makes the plasma homogeneous and can mitigate refractive losses by means of wave-guiding. A computational study combining a hydrodynamics code and an atomic physics code is presented, which includes a ray-tracing modeling based on the eikonal theory of the trajectory equation. This study presents gain calculations based on population inversion produced by free-electron collisions exciting bound electrons into metastable levels in the 3d94d1(J = 0) → 3d94p1(J = 1) transition of Ni-like Sn. Further, the Hohlraum suggests a dramatic enhancement of the conversion efficiency of collisionally excited x-ray lasing for Ni-like Sn.