723 resultados para Fringing Reefs
Resumo:
Twenty-five specimens of the hermit crab Calcinus tubularis were observed during SCUBA dives for fauna and flora assessment in the shallow rocky reefs of the southern coast of Portugal between 2003 and 2008. Of the specimens observed, only one specimen used a tube gallery, while the others occupied unidentified gastropod shells with strong bio-cover. Calcinus tubularis is here recorded from the mainland Portuguese coast for the first time. This is the first record of the species in European coastal waters outside the Mediterranean Sea (excluding the Atlantic Islands) and extends the known geographical distribution of the species further north in the north-eastern Atlantic.
Resumo:
The mesophotic zone is frequently defined as ranging between 30-40 and 150 m depth. However, these borders are necessarily imprecise due to variations in the penetration of light along the water column related to local factors. Moreover, density of data on mesophotic ecosystems vary along geographical distance, with temperate latitudes largely less explored than tropical situations. This is the case of the Mediterranean Sea, where information on mesophotic ecosystems is largely lower with respect to tropical situations. The lack of a clear definition of the borders of the mesophotic zone may represent a problem when information must be transferred to the policy that requires a coherent spatial definition to plan proper management and conservation measures. The present thesis aims at providing information on the spatial definition of the mesophotic zone in the Mediterranean Sea, its biodiversity and distribution of its ecosystems. The first chapter analyzes information on mesophotic ecosystems in the Mediterranean Sea to identify gaps in the literature and map the mesophotic zone in the Mediterranean Sea using light penetration estimated from satellite data. In the second chapter, different visual techniques to study mesophotic ecosystems are compared to identify the best analytical method to estimate diversity and habitat extension. In the third chapter, a set of Remotely Operated vehicles (ROV) surveys performed on mesophotic assemblages in the Mediterranean Sea are analyzed to describe their taxonomic and functional diversity and environmental factors influencing their structure. A Habitat Suitability Model is run in the fourth chapter to map the distribution of areas suitable for the presence of deep-water oyster reefs in the Adriatic-Ionian area. The fifth chapter explores the mesophotic zone in the northern Gulf of Mexico providing its spatial and vertical extension of the mesophotic zone and information on the diversity associated with mesophotic ecosystems.
Resumo:
Marine healthy ecosystems support life on Earth and human well-being thanks to their biodiversity, which is proven to decline mainly due to anthropogenic stressors. Monitoring how marine biodiversity changes trough space and time is needed to properly define and enroll effective actions towards habitat conservation and preservation. This is particularly needed in those areas that are very rich in species compared to their low surface extension and are characterized by strong anthropic pressures, such as the Mediterranean Sea. Subtidal rocky benthic Mediterranean habitats have a complex structural architecture, hosting a panoply of tiny organisms (cryptofauna) that inhabit crevices and caves, but that are still unknown. Different artificial standardized sampling structures (SSS) and methods have been developed and employed to characterize the cryptofauna, allowing for data replicability and comparability across regions. Organisms growing on these artificial structures can be identified coupling morphological taxonomy and DNA barcoding and metabarcoding. The metabarcoding allows for the identification of organisms in a bulk sample without morphological analysis, and it is based on comparing the genetic similarities of the assessed organisms with barcoding sequences present in online barcoding repositories. Nevertheless, barcoded species nowadays represent only a small portion of known species, and barcoding reference databases are not always curated and updated on a regular basis. In this Thesis I used an integrative approach to characterize benthic marine biodiversity, specifically coupling morphological and molecular techniques with the employment of SSS. Moreover, I upgraded the actual status of COI (cytochrome c oxidase subunit I) barcoding of marine metazoans, and I built a customized COI barcoding reference database for metabarcoding studies on temperate biogenic reefs. This work implemented the knowledge about diversity of Mediterranean marine communities, laying the groundworks for monitoring marine and environmental changes that will occur in the next future as consequences of anthropic and climate threats.