805 resultados para Forecasting of electricity market prices


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uncertainty associated to the forecast of photovoltaic generation is a major drawback for the widespread introduction of this technology into electricity grids. This uncertainty is a challenge in the design and operation of electrical systems that include photovoltaic generation. Demand-Side Management (DSM) techniques are widely used to modify energy consumption. If local photovoltaic generation is available, DSM techniques can use generation forecast to schedule the local consumption. On the other hand, local storage systems can be used to separate electricity availability from instantaneous generation; therefore, the effects of forecast error in the electrical system are reduced. The effects of uncertainty associated to the forecast of photovoltaic generation in a residential electrical system equipped with DSM techniques and a local storage system are analyzed in this paper. The study has been performed in a solar house that is able to displace a residential user?s load pattern, manage local storage and estimate forecasts of electricity generation. A series of real experiments and simulations have carried out on the house. The results of this experiments show that the use of Demand Side Management (DSM) and local storage reduces to 2% the uncertainty on the energy exchanged with the grid. In the case that the photovoltaic system would operate as a pure electricity generator feeding all generated electricity into grid, the uncertainty would raise to around 40%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este proyecto se crea un modelo de casación de ofertas de venta y de adquisición de energía eléctrica. Este modelo sirve para simular, de manera simplificada, el proceso de casación que tiene lugar en el mercado Diario peninsular (España y Portugal). Con el fin de averiguar el comportamiento del sector eléctrico, en este aspecto, en el futuro, se extrapolan las ofertas de adquisición según una evolución prevista de demanda y se utiliza el modelo creado para prever el mix energético y los precios de la electricidad. Esta previsión se hace en base a tres escenarios. Uno en el que hay un importante autoabastecimiento de energía eléctrica en los puntos de consumo residenciales; otro en el que el vehículo eléctrico entra de manera significativa en el parque automovilístico peninsular; y el tercero en el que las energías renovables asumen el principal peso de la cobertura de energía eléctrica. Abstract In this project a model for matching sale and purchase bids of electricity power is created. The model simulates, simplified, the process of setting energy and prices in the Daily Market of the Iberian Peninsula (Spain and Portugal). In order to determine the electricity sector behavior in the future, purchase bids are extrapolated following a prevision of demand and the model is used to predict the generation technologies mix and electricity prices. This forecast is based on three possible scenarios. The first one assumes significant self-supply of electricity in residential areas; the second one considers that the electric vehicle relevantly enters the peninsular fleet; the third one supposes that renewable energies cover the majority of electric energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En esta tesis se va a describir y aplicar de forma novedosa la técnica del alisado exponencial multivariante a la predicción a corto plazo, a un día vista, de los precios horarios de la electricidad, un problema que se está estudiando intensivamente en la literatura estadística y económica reciente. Se van a demostrar ciertas propiedades interesantes del alisado exponencial multivariante que permiten reducir el número de parámetros para caracterizar la serie temporal y que al mismo tiempo permiten realizar un análisis dinámico factorial de la serie de precios horarios de la electricidad. En particular, este proceso multivariante de elevada dimensión se estimará descomponiéndolo en un número reducido de procesos univariantes independientes de alisado exponencial caracterizado cada uno por un solo parámetro de suavizado que variará entre cero (proceso de ruido blanco) y uno (paseo aleatorio). Para ello, se utilizará la formulación en el espacio de los estados para la estimación del modelo, ya que ello permite conectar esa secuencia de modelos univariantes más eficientes con el modelo multivariante. De manera novedosa, las relaciones entre los dos modelos se obtienen a partir de un simple tratamiento algebraico sin requerir la aplicación del filtro de Kalman. De este modo, se podrán analizar y poner al descubierto las razones últimas de la dinámica de precios de la electricidad. Por otra parte, la vertiente práctica de esta metodología se pondrá de manifiesto con su aplicación práctica a ciertos mercados eléctricos spot, tales como Omel, Powernext y Nord Pool. En los citados mercados se caracterizará la evolución de los precios horarios y se establecerán sus predicciones comparándolas con las de otras técnicas de predicción. ABSTRACT This thesis describes and applies the multivariate exponential smoothing technique to the day-ahead forecast of the hourly prices of electricity in a whole new way. This problem is being studied intensively in recent statistics and economics literature. It will start by demonstrating some interesting properties of the multivariate exponential smoothing that reduce drastically the number of parameters to characterize the time series and that at the same time allow a dynamic factor analysis of the hourly prices of electricity series. In particular this very complex multivariate process of dimension 24 will be estimated by decomposing a very reduced number of univariate independent of exponentially smoothing processes each characterized by a single smoothing parameter that varies between zero (white noise process) and one (random walk). To this end, the formulation is used in the state space model for the estimation, since this connects the sequence of efficient univariate models to the multivariate model. Through a novel way, relations between the two models are obtained from a simple algebraic treatment without applying the Kalman filter. Thus, we will analyze and expose the ultimate reasons for the dynamics of the electricity price. Moreover, the practical aspect of this methodology will be shown by applying this new technique to certain electricity spot markets such as Omel, Powernext and Nord Pool. In those markets the behavior of prices will be characterized, their predictions will be formulated and the results will be compared with those of other forecasting techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente Tesis constituye un avance en el conocimiento de los efectos de la variabilidad climática en los cultivos en la Península Ibérica (PI). Es bien conocido que la temperatura del océano, particularmente de la región tropical, es una de las variables más convenientes para ser utilizado como predictor climático. Los océanos son considerados como la principal fuente de almacenamiento de calor del planeta debido a la alta capacidad calorífica del agua. Cuando se libera esta energía, altera los regímenes globales de circulación atmosférica por mecanismos de teleconexión. Estos cambios en la circulación general de la atmósfera afectan a la temperatura, precipitación, humedad, viento, etc., a escala regional, los cuales afectan al crecimiento, desarrollo y rendimiento de los cultivos. Para el caso de Europa, esto implica que la variabilidad atmosférica en una región específica se asocia con la variabilidad de otras regiones adyacentes y/o remotas, como consecuencia Europa está siendo afectada por los patrones de circulaciones globales, que a su vez, se ven afectados por patrones oceánicos. El objetivo general de esta tesis es analizar la variabilidad del rendimiento de los cultivos y su relación con la variabilidad climática y teleconexiones, así como evaluar su predictibilidad. Además, esta Tesis tiene como objetivo establecer una metodología para estudiar la predictibilidad de las anomalías del rendimiento de los cultivos. El análisis se centra en trigo y maíz como referencia para otros cultivos de la PI, cultivos de invierno en secano y cultivos de verano en regadío respectivamente. Experimentos de simulación de cultivos utilizando una metodología en cadena de modelos (clima + cultivos) son diseñados para evaluar los impactos de los patrones de variabilidad climática en el rendimiento y su predictibilidad. La presente Tesis se estructura en dos partes: La primera se centra en el análisis de la variabilidad del clima y la segunda es una aplicación de predicción cuantitativa de cosechas. La primera parte está dividida en 3 capítulos y la segundo en un capitulo cubriendo los objetivos específicos del presente trabajo de investigación. Parte I. Análisis de variabilidad climática El primer capítulo muestra un análisis de la variabilidad del rendimiento potencial en una localidad como indicador bioclimático de las teleconexiones de El Niño con Europa, mostrando su importancia en la mejora de predictibilidad tanto en clima como en agricultura. Además, se presenta la metodología elegida para relacionar el rendimiento con las variables atmosféricas y oceánicas. El rendimiento de los cultivos es parcialmente determinado por la variabilidad climática atmosférica, que a su vez depende de los cambios en la temperatura de la superficie del mar (TSM). El Niño es el principal modo de variabilidad interanual de la TSM, y sus efectos se extienden en todo el mundo. Sin embargo, la predictibilidad de estos impactos es controversial, especialmente aquellos asociados con la variabilidad climática Europea, que se ha encontrado que es no estacionaria y no lineal. Este estudio mostró cómo el rendimiento potencial de los cultivos obtenidos a partir de datos de reanálisis y modelos de cultivos sirve como un índice alternativo y más eficaz de las teleconexiones de El Niño, ya que integra las no linealidades entre las variables climáticas en una única serie temporal. Las relaciones entre El Niño y las anomalías de rendimiento de los cultivos son más significativas que las contribuciones individuales de cada una de las variables atmosféricas utilizadas como entrada en el modelo de cultivo. Además, la no estacionariedad entre El Niño y la variabilidad climática europea se detectan con mayor claridad cuando se analiza la variabilidad de los rendimiento de los cultivos. La comprensión de esta relación permite una cierta predictibilidad hasta un año antes de la cosecha del cultivo. Esta predictibilidad no es constante, sino que depende tanto la modulación de la alta y baja frecuencia. En el segundo capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de verano en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de maíz en la PI para todo el siglo veinte, usando un modelo de cultivo calibrado en 5 localidades españolas y datos climáticos de reanálisis para obtener series temporales largas de rendimiento potencial. Este estudio evalúa el uso de datos de reanálisis para obtener series de rendimiento de cultivos que dependen solo del clima, y utilizar estos rendimientos para analizar la influencia de los patrones oceánicos y atmosféricos. Los resultados muestran una gran fiabilidad de los datos de reanálisis. La distribución espacial asociada a la primera componente principal de la variabilidad del rendimiento muestra un comportamiento similar en todos los lugares estudiados de la PI. Se observa una alta correlación lineal entre el índice de El Niño y el rendimiento, pero no es estacionaria en el tiempo. Sin embargo, la relación entre la temperatura del aire y el rendimiento se mantiene constante a lo largo del tiempo, siendo los meses de mayor influencia durante el período de llenado del grano. En cuanto a los patrones atmosféricos, el patrón Escandinavia presentó una influencia significativa en el rendimiento en PI. En el tercer capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de invierno en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de trigo en secano del Noreste (NE) de la PI. La variabilidad climática es el principal motor de los cambios en el crecimiento, desarrollo y rendimiento de los cultivos, especialmente en los sistemas de producción en secano. En la PI, los rendimientos de trigo son fuertemente dependientes de la cantidad de precipitación estacional y la distribución temporal de las mismas durante el periodo de crecimiento del cultivo. La principal fuente de variabilidad interanual de la precipitación en la PI es la Oscilación del Atlántico Norte (NAO), que se ha relacionado, en parte, con los cambios en la temperatura de la superficie del mar en el Pacífico Tropical (El Niño) y el Atlántico Tropical (TNA). La existencia de cierta predictibilidad nos ha animado a analizar la posible predicción de los rendimientos de trigo en la PI utilizando anomalías de TSM como predictor. Para ello, se ha utilizado un modelo de cultivo (calibrado en dos localidades del NE de la PI) y datos climáticos de reanálisis para obtener series temporales largas de rendimiento de trigo alcanzable y relacionar su variabilidad con anomalías de la TSM. Los resultados muestran que El Niño y la TNA influyen en el desarrollo y rendimiento del trigo en el NE de la PI, y estos impactos depende del estado concurrente de la NAO. Aunque la relación cultivo-TSM no es igual durante todo el periodo analizado, se puede explicar por un mecanismo eco-fisiológico estacionario. Durante la segunda mitad del siglo veinte, el calentamiento (enfriamiento) en la superficie del Atlántico tropical se asocia a una fase negativa (positiva) de la NAO, que ejerce una influencia positiva (negativa) en la temperatura mínima y precipitación durante el invierno y, por lo tanto, aumenta (disminuye) el rendimiento de trigo en la PI. En relación con El Niño, la correlación más alta se observó en el período 1981 -2001. En estas décadas, los altos (bajos) rendimientos se asocian con una transición El Niño - La Niña (La Niña - El Niño) o con eventos de El Niño (La Niña) que están finalizando. Para estos eventos, el patrón atmosférica asociada se asemeja a la NAO, que también influye directamente en la temperatura máxima y precipitación experimentadas por el cultivo durante la floración y llenado de grano. Los co- efectos de los dos patrones de teleconexión oceánicos ayudan a aumentar (disminuir) la precipitación y a disminuir (aumentar) la temperatura máxima en PI, por lo tanto el rendimiento de trigo aumenta (disminuye). Parte II. Predicción de cultivos. En el último capítulo se analiza los beneficios potenciales del uso de predicciones climáticas estacionales (por ejemplo de precipitación) en las predicciones de rendimientos de trigo y maíz, y explora métodos para aplicar dichos pronósticos climáticos en modelos de cultivo. Las predicciones climáticas estacionales tienen un gran potencial en las predicciones de cultivos, contribuyendo de esta manera a una mayor eficiencia de la gestión agrícola, seguridad alimentaria y de subsistencia. Los pronósticos climáticos se expresan en diferentes formas, sin embargo todos ellos son probabilísticos. Para ello, se evalúan y aplican dos métodos para desagregar las predicciones climáticas estacionales en datos diarios: 1) un generador climático estocástico condicionado (predictWTD) y 2) un simple re-muestreador basado en las probabilidades del pronóstico (FResampler1). Los dos métodos se evaluaron en un caso de estudio en el que se analizaron los impactos de tres escenarios de predicciones de precipitación estacional (predicción seco, medio y lluvioso) en el rendimiento de trigo en secano, sobre las necesidades de riego y rendimiento de maíz en la PI. Además, se estimó el margen bruto y los riesgos de la producción asociada con las predicciones de precipitación estacional extremas (seca y lluviosa). Los métodos predWTD y FResampler1 usados para desagregar los pronósticos de precipitación estacional en datos diarios, que serán usados como inputs en los modelos de cultivos, proporcionan una predicción comparable. Por lo tanto, ambos métodos parecen opciones factibles/viables para la vinculación de los pronósticos estacionales con modelos de simulación de cultivos para establecer predicciones de rendimiento o las necesidades de riego en el caso de maíz. El análisis del impacto en el margen bruto de los precios del grano de los dos cultivos (trigo y maíz) y el coste de riego (maíz) sugieren que la combinación de los precios de mercado previstos y la predicción climática estacional pueden ser una buena herramienta en la toma de decisiones de los agricultores, especialmente en predicciones secas y/o localidades con baja precipitación anual. Estos métodos permiten cuantificar los beneficios y riesgos de los agricultores ante una predicción climática estacional en la PI. Por lo tanto, seríamos capaces de establecer sistemas de alerta temprana y diseñar estrategias de adaptación del manejo del cultivo para aprovechar las condiciones favorables o reducir los efectos de condiciones adversas. La utilidad potencial de esta Tesis es la aplicación de las relaciones encontradas para predicción de cosechas de la próxima campaña agrícola. Una correcta predicción de los rendimientos podría ayudar a los agricultores a planear con antelación sus prácticas agronómicas y todos los demás aspectos relacionados con el manejo de los cultivos. Esta metodología se puede utilizar también para la predicción de las tendencias futuras de la variabilidad del rendimiento en la PI. Tanto los sectores públicos (mejora de la planificación agrícola) como privados (agricultores, compañías de seguros agrarios) pueden beneficiarse de esta mejora en la predicción de cosechas. ABSTRACT The present thesis constitutes a step forward in advancing of knowledge of the effects of climate variability on crops in the Iberian Peninsula (IP). It is well known that ocean temperature, particularly the tropical ocean, is one of the most convenient variables to be used as climate predictor. Oceans are considered as the principal heat storage of the planet due to the high heat capacity of water. When this energy is released, it alters the global atmospheric circulation regimes by teleconnection1 mechanisms. These changes in the general circulation of the atmosphere affect the regional temperature, precipitation, moisture, wind, etc., and those influence crop growth, development and yield. For the case of Europe, this implies that the atmospheric variability in a specific region is associated with the variability of others adjacent and/or remote regions as a consequence of Europe being affected by global circulations patterns which, in turn, are affected by oceanic patterns. The general objective of this Thesis is to analyze the variability of crop yields at climate time scales and its relation to the climate variability and teleconnections, as well as to evaluate their predictability. Moreover, this Thesis aims to establish a methodology to study the predictability of crop yield anomalies. The analysis focuses on wheat and maize as a reference crops for other field crops in the IP, for winter rainfed crops and summer irrigated crops respectively. Crop simulation experiments using a model chain methodology (climate + crop) are designed to evaluate the impacts of climate variability patterns on yield and its predictability. The present Thesis is structured in two parts. The first part is focused on the climate variability analyses, and the second part is an application of the quantitative crop forecasting for years that fulfill specific conditions identified in the first part. This Thesis is divided into 4 chapters, covering the specific objectives of the present research work. Part I. Climate variability analyses The first chapter shows an analysis of potential yield variability in one location, as a bioclimatic indicator of the El Niño teleconnections with Europe, putting forward its importance for improving predictability in both climate and agriculture. It also presents the chosen methodology to relate yield with atmospheric and oceanic variables. Crop yield is partially determined by atmospheric climate variability, which in turn depends on changes in the sea surface temperature (SST). El Niño is the leading mode of SST interannual variability, and its impacts extend worldwide. Nevertheless, the predictability of these impacts is controversial, especially those associated with European climate variability, which have been found to be non-stationary and non-linear. The study showed how potential2 crop yield obtained from reanalysis data and crop models serves as an alternative and more effective index of El Niño teleconnections because it integrates the nonlinearities between the climate variables in a unique time series. The relationships between El Niño and crop yield anomalies are more significant than the individual contributions of each of the atmospheric variables used as input in the crop model. Additionally, the non-stationarities between El Niño and European climate variability are more clearly detected when analyzing crop-yield variability. The understanding of this relationship allows for some predictability up to one year before the crop is harvested. This predictability is not constant, but depends on both high and low frequency modulation. The second chapter identifies the oceanic and atmospheric patterns of climate variability affecting summer cropping systems in the IP. Moreover, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of simulated crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The third chapter identifies the oceanic and atmospheric patterns of climate variability affecting winter cropping systems in the IP. Also, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of rainfed wheat yield variability in IP. Climate variability is the main driver of changes in crop growth, development and yield, especially for rainfed production systems. In IP, wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. The major source of precipitation interannual variability in IP is the North Atlantic Oscillation (NAO) which has been related in part with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) sea surface temperature (SST). The existence of some predictability has encouraged us to analyze the possible predictability of the wheat yield in the IP using SSTs anomalies as predictor. For this purpose, a crop model with a site specific calibration for the Northeast of IP and reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that El Niño and TNA influence rainfed wheat development and yield in IP and these impacts depend on the concurrent state of the NAO. Although crop-SST relationships do not equally hold on during the whole analyzed period, they can be explained by an understood and stationary ecophysiological mechanism. During the second half of the twenty century, the positive (negative) TNA index is associated to a negative (positive) phase of NAO, which exerts a positive (negative) influence on minimum temperatures (Tmin) and precipitation (Prec) during winter and, thus, yield increases (decreases) in IP. In relation to El Niño, the highest correlation takes place in the period 1981-2001. For these decades, high (low) yields are associated with an El Niño to La Niña (La Niña to El Niño) transitions or to El Niño events finishing. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures (Tmax) and precipitation experienced by the crop during flowering and grain filling. The co-effects of the two teleconnection patterns help to increase (decrease) the rainfall and decrease (increase) Tmax in IP, thus on increase (decrease) wheat yield. Part II. Crop forecasting The last chapter analyses the potential benefits for wheat and maize yields prediction from using seasonal climate forecasts (precipitation), and explores methods to apply such a climate forecast to crop models. Seasonal climate prediction has significant potential to contribute to the efficiency of agricultural management, and to food and livelihood security. Climate forecasts come in different forms, but probabilistic. For this purpose, two methods were evaluated and applied for disaggregating seasonal climate forecast into daily weather realizations: 1) a conditioned stochastic weather generator (predictWTD) and 2) a simple forecast probability resampler (FResampler1). The two methods were evaluated in a case study where the impacts of three scenarios of seasonal rainfall forecasts on rainfed wheat yield, on irrigation requirements and yields of maize in IP were analyzed. In addition, we estimated the economic margins and production risks associated with extreme scenarios of seasonal rainfall forecasts (dry and wet). The predWTD and FResampler1 methods used for disaggregating seasonal rainfall forecast into daily data needed by the crop simulation models provided comparable predictability. Therefore both methods seem feasible options for linking seasonal forecasts with crop simulation models for establishing yield forecasts or irrigation water requirements. The analysis of the impact on gross margin of grain prices for both crops and maize irrigation costs suggests the combination of market prices expected and the seasonal climate forecast can be a good tool in farmer’s decision-making, especially on dry forecast and/or in locations with low annual precipitation. These methodologies would allow quantifying the benefits and risks of a seasonal weather forecast to farmers in IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. The potential usefulness of this Thesis is to apply the relationships found to crop forecasting on the next cropping season, suggesting opportunity time windows for the prediction. The methodology can be used as well for the prediction of future trends of IP yield variability. Both public (improvement of agricultural planning) and private (decision support to farmers, insurance companies) sectors may benefit from such an improvement of crop forecasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In some countries, photovoltaic (PV) technology is at a stage of development at which it can compete with conventional electricity sources in terms of electricity generation costs, i.e., grid parity. A case in point is Germany, where the PV market has reached a mature stage, the policy support has scaled down and the diffusion rate of PV systems has declined. This development raises a fundamental question: what are the motives to adopt PV systems at grid parity? The point of departure for the relevant literature has been on the impact of policy support, adopters and, recently, local solar companies. However, less attention has been paid to the motivators for adoption at grid parity. This paper presents an in-depth analysis of the diffusion of PV systems, explaining the impact of policy measures, adopters and system suppliers. Anchored in an extensive and exploratory case study in Germany, we provide a context-specific explanation to the motivations to adopt PV systems at grid parity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing economic competition drives the industry to implement tools that improve their processes efficiencies. The process automation is one of these tools, and the Real Time Optimization (RTO) is an automation methodology that considers economic aspects to update the process control in accordance with market prices and disturbances. Basically, RTO uses a steady-state phenomenological model to predict the process behavior, and then, optimizes an economic objective function subject to this model. Although largely implemented in industry, there is not a general agreement about the benefits of implementing RTO due to some limitations discussed in the present work: structural plant/model mismatch, identifiability issues and low frequency of set points update. Some alternative RTO approaches have been proposed in literature to handle the problem of structural plant/model mismatch. However, there is not a sensible comparison evaluating the scope and limitations of these RTO approaches under different aspects. For this reason, the classical two-step method is compared to more recently derivative-based methods (Modifier Adaptation, Integrated System Optimization and Parameter estimation, and Sufficient Conditions of Feasibility and Optimality) using a Monte Carlo methodology. The results of this comparison show that the classical RTO method is consistent, providing a model flexible enough to represent the process topology, a parameter estimation method appropriate to handle measurement noise characteristics and a method to improve the sample information quality. At each iteration, the RTO methodology updates some key parameter of the model, where it is possible to observe identifiability issues caused by lack of measurements and measurement noise, resulting in bad prediction ability. Therefore, four different parameter estimation approaches (Rotational Discrimination, Automatic Selection and Parameter estimation, Reparametrization via Differential Geometry and classical nonlinear Least Square) are evaluated with respect to their prediction accuracy, robustness and speed. The results show that the Rotational Discrimination method is the most suitable to be implemented in a RTO framework, since it requires less a priori information, it is simple to be implemented and avoid the overfitting caused by the Least Square method. The third RTO drawback discussed in the present thesis is the low frequency of set points update, this problem increases the period in which the process operates at suboptimum conditions. An alternative to handle this problem is proposed in this thesis, by integrating the classic RTO and Self-Optimizing control (SOC) using a new Model Predictive Control strategy. The new approach demonstrates that it is possible to reduce the problem of low frequency of set points updates, improving the economic performance. Finally, the practical aspects of the RTO implementation are carried out in an industrial case study, a Vapor Recompression Distillation (VRD) process located in Paulínea refinery from Petrobras. The conclusions of this study suggest that the model parameters are successfully estimated by the Rotational Discrimination method; the RTO is able to improve the process profit in about 3%, equivalent to 2 million dollars per year; and the integration of SOC and RTO may be an interesting control alternative for the VRD process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Historical review of wages and prices. 1752-1860 -- Comparative wages, prices, and cost of living: Massachusetts and Great Britain. 1860-1883.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Being able to transport electricity seamlessly across borders is essential for achieving three major European Union energy policy goals: (1) enabling competition between national energy companies, (2) cost-effective roll-out of renewables,and (3) security of supply. However, neither the market design nor the framework for infrastructure investment proposed by the European Commission is adequate for enabling free flows of electricity within the EU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The German government’s final decision to abandon nuclear power as of 2022 has been expected for months. However, instead of calming the waters, providing solutions and answering the question ‘What next?’, it has only fanned the flames. Even the adoption of legal amendments enforcing the government’s decision by the German parliament (both the Bundestag and the Bundesrat) in late June and early July has not calmed the situation. It is more than apparent that these decisions have been made under emotional pressure: there was not enough time for accurate calculations to be made and consideration to be given to the consequences of Germany abandoning nuclear power. Chancellor Angela Merkel has so far been unable to fully convince the public that the ‘energy shift is a huge opportunity’ and that this process will be carried out on condition that ‘the supplies remain secure, the climate protected and the whole process economically efficient’1. German economic associations have warned against a politically motivated, ill-judged and irreversible abandonment of nuclear energy. They are anxious about an increase in electricity prices, the instability of supplies and environmental damage. The government believes, however, that green technologies will become a new driving force for the German economy and its main export commodity. Before that happens the industry will have to increase its use of electricity produced from fossil fuels, mainly natural gas imported from Russia. This may be exploited by Gazprom which will try to strengthen its position on the German market, and thus in the entire EU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this Working Paper is to provide an empirical analysis of the marginal return on working capital and fixed capital in agriculture, based on data gathered by the Farm Accountancy Data Network from seven EU member states. Particular emphasis is placed on the detection of credit market imperfections. The key idea is to provide farm group-specific estimates of the shadow price of capital, and to use these to analyse the drivers of on-farm capital use in European agriculture. Based on Cobb Douglas estimates of farm-type specific production functions, we find that working capital is typically used in more than economically optimal quantities and often displays negative marginal returns across countries and farm types. This is less often the case with regard to fixed capital, but it is only in a small set of sectors where access to fixed capital appears severely constrained. These sectors include field crop and mixed farms in Denmark, dairy farms in East Germany, as well as mixed farms in Italy and the UK. The relationship between farm financial indicators and the estimated shadow prices of capital varies considerably across countries and sectors. Among the farms with a high shadow price for fixed capital in Denmark, high debt levels and little owned land tended to induce more intensive capital use, which may reflect the liberal Danish banking system. In East Germany, Italy and the UK, high debt levels made farmers more tightly capital constrained. Hence, in the latter group of countries, more traditional mechanisms of capital allocation based on debt capacity seemed to be at work. As a general conclusion, EU agriculture appears to be characterised by overcapitalisation rather than by credit constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates the degree of segmentation of the market for agricultural machinery and equipment in the EU. We focus on agricultural tractors, the most common and biggest investment in machinery and equipment in the agricultural sector. By using country price data for individual tractor models, we test the law of one price, i.e. the existence of a common price for tractors across EU member states. We find that significant price differences exist, yet unlike most other studies we find that large price deviations are penalised within a short time. The study also shows that transport costs are an important source of price differences, as domestic production leads to lower prices on the domestic market and as price convergence is negatively correlated with distance. Finally, price differences should not solely be understood from a geographical perspective, as evidence supports the idea that farmers’ buying power is significant in explaining price differences within countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the different production factors, land is the one that most often limits farm development and one of the most studied. The connection between policy and other context variables and land markets is at the core of the policy debate, including the present reform of the Common Agricultural Policy. The proposal of the latter has been published in October 2011 and in Italy it will include the switch of the payment regime from an historical to a regional basis. The authors’ objective is to simulate the impact of the proposed policy reform on the land market, particularly on land values and propensity to transaction. They combine insights and data from a farm household investment model revised and extended in order to simulate the demand curve for land in different policy scenarios and a survey of farmers stated intention carried out in the province of Bologna (Italy) in 2012. Based on these results, the authors calibrate a mathematical programming model of land market exchanges for the province of Bologna and use this model form simulation. The results of the model largely corroborate the results from the survey and both hint at a relevant reaction of the land demand and supply to the shift from the historical to the regionalised payments. As effect, the regionalisation would result in increased rental prices and in a tendency to the re-allocation of land.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

European Union energy policy calls for nothing less than a profound transformation of the EU's energy system: by 2050 decarbonised electricity generation with 80-95% fewer greenhouse gas emissions, increased use of renewables, more energy efficiency, a functioning energy market and increased security of supply are to be achieved. Different EU policies (e.g., EU climate and energy package for 2020) are intended to create the political and regulatory framework for this transformation. The sectorial dynamics resulting from these EU policies already affect the systems of electricity generation, transportation and storage in Europe, and the more effective the implementation of new measures the more the structure of Europe's power system will change in the years to come. Recent initiatives such as the 2030 climate/energy package and the Energy Union are supposed to keep this dynamic up. Setting new EU targets, however, is not necessarily the same as meeting them. The impact of EU energy policy is likely to have considerable geo-economic implications for individual member states: with increasing market integration come new competitors; coal and gas power plants face new renewable challengers domestically and abroad; and diversification towards new suppliers will result in new trade routes, entry points and infrastructure. Where these implications are at odds with powerful national interests, any member state may point to Article 194, 2 of the Lisbon Treaty and argue that the EU's energy policy agenda interferes with its given right to determine the conditions for exploiting its energy resources, the choice between different energy sources and the general structure of its energy supply. The implementation of new policy initiatives therefore involves intense negotiations to conciliate contradicting interests, something that traditionally has been far from easy to achieve. In areas where this process runs into difficulties, the transfer of sovereignty to the European level is usually to be found amongst the suggested solutions. Pooling sovereignty on a new level, however, does not automatically result in a consensus, i.e., conciliate contradicting interests. Rather than focussing on the right level of decision making, European policy makers need to face the (inconvenient truth of) geo-economical frictions within the Union that make it difficult to come to an arrangement. The reminder of this text explains these latter, more structural and sector-related challenges for European energy policy in more detail, and develops some concrete steps towards a political and regulatory framework necessary to overcome them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Germany’s current energy strategy, known as the “energy transition”, or Energiewende, involves an accelerated withdrawal from the use of nuclear power plants and the development of renewable energy sources (RES). According to the government’s plans, the share of RES in electricity production will gradually increase from its present rate of 26% to 80% in 2050. Greenhouse gas emissions are expected to fall by 80–95% by 2050 when compared to 1990 levels. However, coal power plants still predominate in Germany’s energy mix – they produced 44% of electricity in 2014 (26% from lignite and 18% from hard coal). This makes it difficult to meet the emission reduction objectives, lignite combustion causes the highest levels of greenhouse gas emissions. In order to reach the emission reduction goals, the government launched the process of accelerating the reduction of coal consumption. On 2 July, the Federal Ministry for Economic Affairs and Energy published a plan to reform the German energy market which will be implemented during the present term of government. Emission reduction from coal power plants is the most important issue. This problem has been extensively discussed over the past year and has transformed into a conflict between the government and the coal lobby. The dispute reached its peak when lignite miners took to the streets in Berlin. As the government admits, in order to reach the long-term emission reduction objectives, it is necessary to completely liquidate the coal energy industry in Germany. This is expected to take place within 25 to 30 years. However, since the decision to decommission nuclear power plants was passed, the German ecological movement and the Green Party have shifted their attention to coal power plants, demanding that these be decommissioned by 2030 at the latest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To shift to a low-carbon economy, the EU has been encouraging the deployment of variable renewable energy sources (VRE). However, VRE lack of competitiveness and their technical specificities have substantially raised the cost of the transition. Economic evaluations show that VRE life-cycle costs of electricity generation are still today higher than those of conventional thermal power plants. Member States have consequently adopted dedicated policies to support them. In addition, Ueckerdt et al. (2013) show that when integrated to the power system, VRE induce supplementary not-accounted-for costs. This paper first exposes the rationale of EU renewables goals, the EU targets and current deployment. It then explains why the LCOE metric is not appropriate to compute VRE costs by describing integration costs, their magnitude and their implications. Finally, it analyses the consequences for the power system and policy options. The paper shows that the EU has greatly underestimated VRE direct and indirect costs and that policymakers have failed to take into account the burden caused by renewable energy and the return of State support policies. Indeed, induced market distortions have been shattering the whole power system and have undermined competition in the Internal Energy Market. EU policymakers can nonetheless take full account of this negative trend and reverse it by relying on competition rules, setting-up a framework to collect robust EU-wide data, redesigning the architecture of the electricity system and relying on EU regulators.