964 resultados para Folded cascode topology
Resumo:
We study the orbital modulation of X-rays from Cyg X-3, using data from Swift, INTEGRAL and RXTE. Using the wealth of data presently available and an improved averaging method, we obtain energy-dependent folded and averaged light curves with unprecedented accuracy. We find that above similar to 5?keV the modulation depth decreases with increasing energy, which is consistent with the modulation being caused by both boundfree absorption and Compton scattering in the stellar wind of the donor, with minima corresponding to the highest optical depth, which occurs around the superior conjunction. We find a decrease of the depth below similar to 3?keV, which appears to be due to re-emission of the absorbed continuum by the wind in soft X-ray lines. Based on the shape of the folded light curves, any X-ray contribution from the jet in Cyg X-3, which emits ?-rays detected at energies >0.1?GeV in the soft spectral states, is found to be minor up to similar to 100?keV. This implies the presence of a rather sharp low-energy break in the jet MeV-range spectrum. We also calculate phase-resolved RXTE X-ray spectra and show that the difference between the spectra corresponding to phases around superior and inferior conjunctions can indeed be accounted for by the combined effect of boundfree absorption in an ionized medium and Compton scattering.
Resumo:
Background: Bacteria such as Escherichia coli and Salmonella typhimurium can utilize acetate as the sole source of carbon and energy. Acetate kinase (AckA) and phosphotransacetylase (Pta), key enzymes of acetate utilization pathway, regulate flux of metabolites in glycolysis, gluconeogenesis, TCA cycle, glyoxylate bypass and fatty acid metabolism. Results: Here we report kinetic characterization of S. typhimurium AckA (StAckA) and structures of its unliganded (Form-I, 2.70 angstrom resolution) and citrate-bound (Form-II, 1.90 angstrom resolution) forms. The enzyme showed broad substrate specificity with k(cat)/K-m in the order of acetate > propionate > formate. Further, the K-m for acetyl-phosphate was significantly lower than for acetate and the enzyme could catalyze the reverse reaction (i.e. ATP synthesis) more efficiently. ATP and Mg2+ could be substituted by other nucleoside 5'-triphosphates (GTP, UTP and CTP) and divalent cations (Mn2+ and Co2+), respectively. Form-I StAckA represents the first structural report of an unliganded AckA. StAckA protomer consists of two domains with characteristic beta beta beta alpha beta alpha beta alpha topology of ASKHA superfamily of proteins. These domains adopt an intermediate conformation compared to that of open and closed forms of ligand-bound Methanosarcina thermophila AckA (MtAckA). Spectroscopic and structural analyses of StAckA further suggested occurrence of inter-domain motion upon ligand-binding. Unexpectedly, Form-II StAckA structure showed a drastic change in the conformation of residues 230-300 compared to that of Form-I. Further investigation revealed electron density corresponding to a citrate molecule in a pocket located at the dimeric interface of Form-II StAckA. Interestingly, a similar dimeric interface pocket lined with largely conserved residues could be identified in Form-I StAckA as well as in other enzymes homologous to AckA suggesting that ligand binding at this pocket may influence the function of these enzymes. Conclusions: The biochemical and structural characterization of StAckA reported here provides insights into the biochemical specificity, overall fold, thermal stability, molecular basis of ligand binding and inter-domain motion in AckA family of enzymes. Dramatic conformational differences observed between unliganded and citrate-bound forms of StAckA led to identification of a putative ligand-binding pocket at the dimeric interface of StAckA with implications for enzymatic function.
Resumo:
This study proposes an inverter circuit topology capable of generating multilevel dodecagonal (12-sided polygon) voltage space vectors by the cascaded connection of two-level and three-level inverters. By the proper selection of DC-link voltages and resultant switching states for the inverters, voltage space vectors whose tips lie on three concentric dodecagons, are obtained. A rectifier circuit for the inverter is also proposed, which significantly improves the power factor. The topology offers advantages such as the complete elimination of the fifth and seventh harmonics in phase voltages and an extension of the linear modulation range. In this study, a simple method for the calculation of pulse width modulation timing was presented along with extensive simulation and experimental results in order to validate the proposed concept.
Resumo:
Cross strand aromatic interactions between a facing pair of phenylalanine residues in antiparallel beta-sheet structures have been probed using two structurally defined model peptides. The octapeptide Boc-(LFVPPLFV)-P-D-P-L-OMe (peptide 1) favors the beta-hairpin conformation nucleated by the type II' beta-turn formed by the (D)Pro-(L)Pro segment, placing Phe2 and Phe7 side chains in proximity. Two centrally positioned (D)Pro-(L)Pro segments facilitate the three stranded beta-sheet formation in the 14 residue peptide Boc-LFV(D)P(L)PLFVA(D)P(L)PLFV-OMe (peptide 2) in which the Phe2/Phe7 orientations are similar to that in the octapeptide. The anticipated folded conformations of peptides 1 and 2 are established by the delineation of intramolecularly hydrogen bonded NH groups and by the observation of specific cross strand NOEs. The observation of ring current shifted aromatic protons is a diagnostic of close approach of the Phe2 and Phe7 side chains. Specific assignment of aromatic proton resonances using HSQC and HSQC-TOCSY methods allow an analysis of interproton NOEs between the spatially proximate aromatic rings. This approach facilitates specific assignments in systems containing multiple aromatic rings in spectra at natural abundance. Evidence is presented for a dynamic process which invokes a correlated conformational change about the C-alpha-C-beta(chi(1)) bond for the pair of interacting Phe residues. NMR results suggest that aromatic ring orientations observed in crystals are maintained in solution. Anomalous temperature dependence of ring current induced proton chemical shifts suggests that solvophobic effects may facilitate aromatic ring clustering in apolar solvents.
Resumo:
We consider the (2 + 1) flavor Polyakov quark meson model and study the fluctuations (correlations) of conserved charges up to sixth (fourth) order. A comparison is made with lattice data wherever available and overall good qualitative agreement is found, more so for the case of the normalized susceptibilities. The model predictions for the ratio of susceptibilities go to that of an ideal gas of hadrons as in hadron resonance gas model at low temperatures while at high temperature the values are close to that of an ideal gas of massless quarks. Our study provides a strong basis for the use of the Polyakov quark meson model as an effective model to understand the topology of the QCD phase diagram. DOI: 10.1103/PhysRevD.86.114021 PACS numbers: 12.39.-x, 05.40.-a, 12.38.Aw, 12.38.Mh
Resumo:
In the preparation of synthetic conotoxins containing multiple disulfide bonds, oxidative folding can produce numerous permutations of disulfide bond connectivities. Establishing the native disulfide connectivities thus presents a significant challenge when the venom-derived peptide is not available, as is increasingly the case when conotoxins are identified from cDNA sequences. Here, we investigate the disulfide connectivity of mu-conotoxin KIIIA, which was predicted originally to have a C1-C9,C2-C15,C4-C16] disulfide pattern based on homology with closely related mu-conotoxins. The two major isomers of synthetic mu-KIIIA formed during oxidative folding were purified and their disulfide connectivities mapped by direct mass spectrometric collision-induced dissociation fragmentation of the disulfide-bonded polypeptides. Our results show that the major oxidative folding product adopts a C1-C15,C2-C9,C4-C16] disulfide connectivity, while the minor product adopts a C1-C16,C2-C9,C4-C15] connectivity. Both of these peptides were potent blockers of Na(v)1.2 (K-d values of 5 and 230 nM, respectively). The solution structure for mu-KIIIA based on nuclear magnetic resonance data was recalculated with the C1-C15,C2-C9,C4-C16] disulfide pattern; its structure was very similar to the mu-KIIIA structure calculated with the incorrect C1-C9,C2-C15,C4-C16] disulfide pattern, with an alpha-helix spanning residues 7-12. In addition, the major folding isomers of mu-KIIIB, an N-terminally extended isoform of mu-KIIIA, identified from its cDNA sequence, were isolated. These folding products had the same disulfide connectivities as mu-KIIIA, and both blocked Na(v)1.2 (K-d values of 470 and 26 nM, respectively). Our results establish that the preferred disulfide pattern of synthetic mu-KIIIA and mu-KIIIB folded in vitro is 1-5/2-4/3-6 but that other disulfide isomers are also potent sodium channel blockers. These findings raise questions about the disulfide pattern(s) of mu-KIIIA in the venom of Conus kinoshitai; indeed, the presence of multiple disulfide isomers in the venom could provide a means of further expanding the snail's repertoire of active peptides.
Resumo:
The Reeb graph of a scalar function tracks the evolution of the topology of its level sets. This paper describes a fast algorithm to compute the Reeb graph of a piecewise-linear (PL) function defined over manifolds and non-manifolds. The key idea in the proposed approach is to maximally leverage the efficient contour tree algorithm to compute the Reeb graph. The algorithm proceeds by dividing the input into a set of subvolumes that have loop-free Reeb graphs using the join tree of the scalar function and computes the Reeb graph by combining the contour trees of all the subvolumes. Since the key ingredient of this method is a series of union-find operations, the algorithm is fast in practice. Experimental results demonstrate that it outperforms current generic algorithms by a factor of up to two orders of magnitude, and has a performance on par with algorithms that are catered to restricted classes of input. The algorithm also extends to handle large data that do not fit in memory.
Resumo:
Background: The correlation of genetic distances between pairs of protein sequence alignments has been used to infer protein-protein interactions. It has been suggested that these correlations are based on the signal of co-evolution between interacting proteins. However, although mutations in different proteins associated with maintaining an interaction clearly occur (particularly in binding interfaces and neighbourhoods), many other factors contribute to correlated rates of sequence evolution. Proteins in the same genome are usually linked by shared evolutionary history and so it would be expected that there would be topological similarities in their phylogenetic trees, whether they are interacting or not. For this reason the underlying species tree is often corrected for. Moreover processes such as expression level, are known to effect evolutionary rates. However, it has been argued that the correlated rates of evolution used to predict protein interaction explicitly includes shared evolutionary history; here we test this hypothesis. Results: In order to identify the evolutionary mechanisms giving rise to the correlations between interaction proteins, we use phylogenetic methods to distinguish similarities in tree topologies from similarities in genetic distances. We use a range of datasets of interacting and non-interacting proteins from Saccharomyces cerevisiae. We find that the signal of correlated evolution between interacting proteins is predominantly a result of shared evolutionary rates, rather than similarities in tree topology, independent of evolutionary divergence. Conclusions: Since interacting proteins do not have tree topologies that are more similar than the control group of non-interacting proteins, it is likely that coevolution does not contribute much to, if any, of the observed correlations.
Resumo:
The solution structure of IlvN, the regulatory subunit of Escherichia coil acetohydroxyacid synthase I, in the valine-bound form has been determined using high-resolution multidimensional, multinuclear nuclear magnetic resonance (NMR) methods. IlvN in the presence or absence of the effector molecule is present as a 22.5 kDa dimeric molecule. The ensemble of 20 low-energy structures shows a backbone root-mean-square deviation of 0.73 +/- 0.13 angstrom and a root-mean-square deviation of 1.16 +/- 0.13 angstrom for all heavy atoms. Furthermore, more than 98% of the backbone phi and psi dihedral angles occupy the allowed and additionally allowed regions of the Ramachandran map, which is indicative of the fact that the structures are of high stereochemical quality. Each protomer exhibits a beta alpha beta beta alpha beta alpha topology that is a characteristic feature of the ACT domain seen in metabolic enzymes. In the valine-bound form, IlvN exists apparently as a single conformer. In the free form, IlvN exists as a mixture of conformational states that are in intermediate exchange on the NMR time scale. Thus, a large shift in the conformational equilibrium is observed upon going from the free form to the bound form. The structure of the valine-bound form of IlvN was found to be similar to that of the ACT domain of the unliganded form of IlvH. Comparisons of the structures of the unliganded forms of these proteins suggest significant differences. The structural and conformational properties of IlvN determined here have allowed a better understanding of the mechanism of regulation of branched chain amino acid biosynthesis.
Resumo:
A new hybrid five-level inverter topology with common-mode voltage (CMV) elimination for induction motor drive is proposed in this paper. This topology has only one dc source, and different voltage levels are generated by using this voltage source along with floating capacitors charged to asymmetrical voltage levels. The pulsewidth modulation (PWM) scheme employed in this topology balances the capacitor voltages at the required levels at any power factor and modulation index while eliminating the CMV. This inverter has good fault-tolerant capability as it can be operated in three-or two-level mode with CMV elimination, in case of any failure in the H-bridges. More voltage levels with CMV elimination can be realized from this topology but only in a limited range of modulation index and power factor. Extensive simulation is done to validate the PWM technique for CMV elimination and balancing of the capacitor voltages. The experimental verification of the proposed inverter-fed induction motor is carried out in the linear modulation and overmodulation regions. The steady-state and transient operations of the drive are verified. The dynamics of the capacitor voltage balancing is also tested. The experimental results demonstrate that the proposed topology can be considered for industrial drive applications.
Resumo:
Topoisomerases (topos) maintain DNA topology and influence DNA transaction processes by catalysing relaxation, supercoiling and decatenation reactions. In the cellular milieu, division of labour between different topos ensures topological homeostasis and control of central processes. In Escherichia coli, DNA gyrase is the principal enzyme that carries out negative supercoiling, while topo IV catalyses decatenation, relaxation and unknotting. DNA gyrase apparently has the daunting task of undertaking both the enzyme functions in mycobacteria, where topo IV is absent. We have shown previously that mycobacterial DNA gyrase is an efficient decatenase. Here, we demonstrate that the strong decatenation property of the enzyme is due to its ability to capture two DNA segments in trans. Topo IV, a strong dedicated decatenase of E. coli, also captures two distinct DNA molecules in a similar manner. In contrast, E. coli DNA gyrase, which is a poor decatenase, does not appear to be able to hold two different DNA molecules in a stable complex. The binding of a second DNA molecule to GyrB/ParE is inhibited by ATP and the non-hydrolysable analogue, AMPPNP, and by the substitution of a prominent positively charged residue in the GyrB N-terminal cavity, suggesting that this binding represents a potential T-segment positioned in the cavity. Thus, after the GyrA/ParC mediated initial DNA capture, GyrB/ParE would bind efficiently to a second DNA in trans to form a T-segment prior to nucleotide binding and closure of the gate during decatenation.
Resumo:
Dodecagonal (12-sided) space vector pulsewidth modulation (PWM) schemes are characterized by the complete absence of (6n +/- 1)th-order harmonics (for odd n) in the phase voltages, within the linear modulation range and beyond, including over-modulation. This paper presents a new topology suitable for the realization of such multilevel inverter schemes for induction motor (IM) drives, by cascading two-level inverters with flying-capacitor-inverter fed floating H-bridge cells. Now, any standard IM may be used to get the dodecagonal operation which hitherto was possible only with open-end winding IM. To minimize the current total harmonic distortion (THD), a strategy for synchronous PWM is also proposed. It is shown that the proposed method is capable of obtaining better THD figures, compared to conventional dodecagonal schemes. The topology and the PWM strategy are validated through analysis and subsequently verified experimentally.
Resumo:
Multilevel inverters with hexagonal and dodecagonal voltage space vector structures have improved harmonic profile compared to two-level inverters. Further improvement in the quality of the waveform is possible using multilevel octadecagonal (18-sided polygon) voltage space vectors. This paper proposes an inverter circuit topology capable of generating multilevel octadecagonal voltage space vectors, by cascading two asymmetric three-level inverters. By the proper selection of dc-link voltages and the resultant switching states for the inverters, voltage space vectors, whose tips lie on three concentric octadecagons, are obtained. The advantages of octadecagonal voltage space vector-based pulsewidth modulation (PWM) techniques are the complete elimination of fifth, seventh, eleventh, and thirteenth harmonics in phase voltages and the extension of linear modulation range. In this paper, a simple PWM timing calculation method is also proposed. Experimental results have been presented in this paper to validate the proposed concept.
Resumo:
TCP attacks are the major problem faced by Mobile Ad hoc Networks (MANETs) due to its limited network and host resources. Attacker traceback is a promising solution which allows a victim to identify the exact location of the attacker and hence enables the victim to take proper countermeasure near attack origins, for forensics and to discourage attackers from launching the attacks. However, attacker traceback in MANET is a challenging problem due to dynamic network topology, limited network and host resources such as memory, bandwidth and battery life. We introduce a novel method of TCP attacker Identification in MANET using the Traffic History - MAITH. Based on the comprehensive evaluation based on simulations, we showed that MAITH can successfully track down the attacker under diverse mobile multi-hop network environment with low communication, computation, and memory overhead.
Resumo:
Mobile ad hoc networks (MANETs) is one of the successful wireless network paradigms which offers unrestricted mobility without depending on any underlying infrastructure. MANETs have become an exciting and im- portant technology in recent years because of the rapid proliferation of variety of wireless devices, and increased use of ad hoc networks in various applications. Like any other networks, MANETs are also prone to variety of attacks majorly in routing side, most of the proposed secured routing solutions based on cryptography and authentication methods have greater overhead, which results in latency problems and resource crunch problems, especially in energy side. The successful working of these mechanisms also depends on secured key management involving a trusted third authority, which is generally difficult to implement in MANET environ-ment due to volatile topology. Designing a secured routing algorithm for MANETs which incorporates the notion of trust without maintaining any trusted third entity is an interesting research problem in recent years. This paper propose a new trust model based on cognitive reasoning,which associates the notion of trust with all the member nodes of MANETs using a novel Behaviors-Observations- Beliefs(BOB) model. These trust values are used for detec- tion and prevention of malicious and dishonest nodes while routing the data. The proposed trust model works with the DTM-DSR protocol, which involves computation of direct trust between any two nodes using cognitive knowledge. We have taken care of trust fading over time, rewards, and penalties while computing the trustworthiness of a node and also route. A simulator is developed for testing the proposed algorithm, the results of experiments shows incorporation of cognitive reasoning for computation of trust in routing effectively detects intrusions in MANET environment, and generates more reliable routes for secured routing of data.