982 resultados para Fluid-memory models
Resumo:
With the number of elderly people increasing tremendously worldwide, comes the need for effective methods to maintain or improve older adults' cognitive performance. Using continuous neurofeedback, through the use of EEG techniques, people can learn how to train and alter their brain electrical activity. A software platform that puts together the proposed rehabilitation methodology has been developed: a digital game protocol that supports neurofeedback training of alpha and theta rhythms, by reading the EEG activity and presenting it back to the subject, interleaved with neurocognitive tasks such as n-Back and Corsi Block-Tapping. This tool will be used as a potential rehabilitative platform for age-related memory impairments.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.
Resumo:
The purpose of this study is to investigate the contribution of psychological variables and scales suggested by Economic Psychology in predicting individuals’ default. Therefore, a sample of 555 individuals completed a self-completion questionnaire, which was composed of psychological variables and scales. By adopting the methodology of the logistic regression, the following psychological and behavioral characteristics were found associated with the group of individuals in default: a) negative dimensions related to money (suffering, inequality and conflict); b) high scores on the self-efficacy scale, probably indicating a greater degree of optimism and over-confidence; c) buyers classified as compulsive; d) individuals who consider it necessary to give gifts to children and friends on special dates, even though many people consider this a luxury; e) problems of self-control identified by individuals who drink an average of more than four glasses of alcoholic beverage a day.
Resumo:
This study aims to be a contribution to a theoretical model that explains the effectiveness of the learning and decision-making processes by means of a feedback and mental models perspective. With appropriate mental models, managers should be able to improve their capacity to deal with dynamically complex contexts, in order to achieve long-term success. We present a set of hypotheses about the influence of feedback information and systems thinking facilitation on mental models and management performance. We explore, under controlled conditions, the role of mental models in terms of structure and behaviour. A test based on a simulation experiment with a system dynamics model was performed. Three out of the four hypotheses were confirmed. Causal diagramming positively influences mental model structure similarity, mental model structure similarity positively influences mental model behaviour similarity, and mental model behaviour similarity positively influences the quality of the decision.
Resumo:
This study aims to be a contribution to a theoretical model that explains the effectiveness of the learning and decision-making processes by means of a feedback and mental models perspective. With appropriate mental models, managers should be able to improve their capacity to deal with dynamically complex contexts, in order to achieve long-term success. We present a set of hypotheses about the influence of feedback information and systems thinking facilitation on mental models and management performance. We explore, under controlled conditions, the role of mental models in terms of structure and behaviour. A test based on a simulation experiment with a system dynamics model was performed. Three out of the four hypotheses were confirmed. Causal diagramming positively influences mental model structure similarity, mental model structure similarity positively influences mental model behaviour similarity, and mental model behaviour similarity positively influences the quality of the decision
Resumo:
The volatiles from Coriandrum sativum L., Satureja montana L., Santolina chamaecyparissus L., and Thymus vulgaris L. were isolated by hydrodistillation (essential oil) and supercritical fluid extraction (volatile oil). Their effect on seed germination and root and shoot growth of the surviving seedlings of four crops (Zea mays L., Triticum durum L., Pisum sativum L., and Lactuca sativa L.) and two weeds (Portulaca oleracea L. and Vicia sativa L.) was investigated and compared with those of two synthetic herbicides, Agrocide and Prowl. The volatile oils of thyme and cotton lavender seemed to be promising alternatives to the synthetic herbicides because they were the least injurious to the crop species. The essential oil of winter savory, on the other hand, affected both crop and weeds and can be appropriate for uncultivated fields.
Resumo:
The two-Higgs-doublet model can be constrained by imposing Higgs-family symmetries and/or generalized CP symmetries. It is known that there are only six independent classes of such symmetry-constrained models. We study the CP properties of all cases in the bilinear formalism. An exact symmetry implies CP conservation. We show that soft breaking of the symmetry can lead to spontaneous CP violation (CPV) in three of the classes.
Resumo:
We write down the renormalization-group equations for the Yukawa-coupling matrices in a general multi-Higgs-doublet model. We then assume that the matrices of the Yukawa couplings of the various Higgs doublets to right-handed fermions of fixed quantum numbers are all proportional to each other. We demonstrate that, in the case of the two-Higgs-doublet model, this proportionality is preserved by the renormalization-group running only in the cases of the standard type-I, II, X, and Y models. We furthermore show that a similar result holds even when there are more than two Higgs doublets: the Yukawa-coupling matrices to fermions of a given electric charge remain proportional under the renormalization-group running if and only if there is a basis for the Higgs doublets in which all the fermions of a given electric charge couple to only one Higgs doublet.
Resumo:
A package of B-spline finite strip models is developed for the linear analysis of piezolaminated plates and shells. This package is associated to a global optimization technique in order to enhance the performance of these types of structures, subjected to various types of objective functions and/or constraints, with discrete and continuous design variables. The models considered are based on a higher-order displacement field and one can apply them to the static, free vibration and buckling analyses of laminated adaptive structures with arbitrary lay-ups, loading and boundary conditions. Genetic algorithms, with either binary or floating point encoding of design variables, were considered to find optimal locations of piezoelectric actuators as well as to determine the best voltages applied to them in order to obtain a desired structure shape. These models provide an overall economy of computing effort for static and vibration problems.
Resumo:
Supercritical fluid extraction (SEE) of the volatile oil from Thymus vulgaris L. aerial flowering parts was performed under different conditions of pressure, temperature, mean particle size and CO2 flow rate and the correspondent yield and composition were compared with those of the essential oil isolated by hydrodistillation (HD). Both the oils were analyzed by GC and GC-MS and 52 components were identified. The main volatile components obtained were p-cymene (10.0-42.6% for SFE and 28.9-34.8% for HD), gamma-terpinene (0.8-6.9% for SFE and 5.1-7.0% for HD), linalool (2.3-5.3% for SFE and 2.8-3.1% for HD), thymol (19.5-40.8% for SFE and 35.4-41.6% for HD), and carvacrol (1.4-3.1% for SFE and 2.6-3.1% for HD). The main difference was found to be the relative percentage of thymoquinone (not found in the essential oil) and carvacryl methyl ether (1.0-1.2% for HD versus t-0.4 for SFE) which can explain the higher antioxidant activity, assessed by Rancimat test, of the SFE volatiles when compared with HD. Thymoquinone is considered a strong antioxidant compound.
Resumo:
The modelling of the experimental data of the extraction of the volatile oil from six aromatic plants (coriander, fennel, savoury, winter savoury, cotton lavender and thyme) was performed using five mathematical models, based on differential mass balances. In all cases the extraction was internal diffusion controlled and the internal mass transfer coefficienty (k(s)) have been found to change with pressure, temperature and particle size. For fennel, savoury and cotton lavender, the external mass transfer and the equilibrium phase also influenced the second extraction period, since k(s) changed with the tested flow rates. In general, the axial dispersion coefficient could be neglected for the conditions studied, since Peclet numbers were high. On the other hand, the solute-matrix interaction had to be considered in order to ensure a satisfactory description of the experimental data.
Resumo:
We present new populational growth models, generalized logistic models which are proportional to beta densities with shape parameters p and 2, where p > 1, with Malthusian parameter r. The complex dynamical behaviour of these models is investigated in the parameter space (r, p), in terms of topological entropy, using explicit methods, when the Malthusian parameter r increases. This parameter space is split into different regions, according to the chaotic behaviour of the models.
Resumo:
Recent literature has proved that many classical pricing models (Black and Scholes, Heston, etc.) and risk measures (V aR, CV aR, etc.) may lead to “pathological meaningless situations”, since traders can build sequences of portfolios whose risk leveltends to −infinity and whose expected return tends to +infinity, i.e., (risk = −infinity, return = +infinity). Such a sequence of strategies may be called “good deal”. This paper focuses on the risk measures V aR and CV aR and analyzes this caveat in a discrete time complete pricing model. Under quite general conditions the explicit expression of a good deal is given, and its sensitivity with respect to some possible measurement errors is provided too. We point out that a critical property is the absence of short sales. In such a case we first construct a “shadow riskless asset” (SRA) without short sales and then the good deal is given by borrowing more and more money so as to invest in the SRA. It is also shown that the SRA is interested by itself, even if there are short selling restrictions.