899 resultados para Fit quantification
Resumo:
Soil voids manifest the cumulative effect of local pedogenic processes and ultimately influence soil behavior - especially as it pertains to aeration and hydrophysical properties. Because of the relatively weak attenuation of X-rays by air, compared with liquids or solids, non-disruptive CT scanning has become a very attractive tool for generating three-dimensional imagery of soil voids. One of the main steps involved in this analysis is the thresholding required to transform the original (greyscale) images into the type of binary representation (e.g., pores in white, solids in black) needed for fractal analysis or simulation with Lattice?Boltzmann models (Baveye et al., 2010). The objective of the current work is to apply an innovative approach to quantifying soil voids and pore networks in original X-ray CT imagery using Relative Entropy (Bird et al., 2006; Tarquis et al., 2008). These will be illustrated using typical imagery representing contrasting soil structures. Particular attention will be given to the need to consider the full 3D context of the CT imagery, as well as scaling issues, in the application and interpretation of this index.
Resumo:
In order to properly understand and model the gene regulatory networks in animals development, it is crucial to obtain detailed measurements, both in time and space, about their gene expression domains. In this paper, we propose a complete computational framework to fulfill this task and create a 3D Atlas of the early zebrafish embryogenesis annotated with both the cellular localizations and the level of expression of different genes at different developmental stages. The strategy to construct such an Atlas is described here with the expression pattern of 5 different genes at 6 hours of development post fertilization.
Resumo:
Background: There are 600,000 new malaria cases daily worldwide. The gold standard for estimating the parasite burden and the corresponding severity of the disease consists in manually counting the number of parasites in blood smears through a microscope, a process that can take more than 20 minutes of an expert microscopist’s time. Objective: This research tests the feasibility of a crowdsourced approach to malaria image analysis. In particular, we investigated whether anonymous volunteers with no prior experience would be able to count malaria parasites in digitized images of thick blood smears by playing a Web-based game. Methods: The experimental system consisted of a Web-based game where online volunteers were tasked with detecting parasites in digitized blood sample images coupled with a decision algorithm that combined the analyses from several players to produce an improved collective detection outcome. Data were collected through the MalariaSpot website. Random images of thick blood films containing Plasmodium falciparum at medium to low parasitemias, acquired by conventional optical microscopy, were presented to players. In the game, players had to find and tag as many parasites as possible in 1 minute. In the event that players found all the parasites present in the image, they were presented with a new image. In order to combine the choices of different players into a single crowd decision, we implemented an image processing pipeline and a quorum algorithm that judged a parasite tagged when a group of players agreed on its position. Results: Over 1 month, anonymous players from 95 countries played more than 12,000 games and generated a database of more than 270,000 clicks on the test images. Results revealed that combining 22 games from nonexpert players achieved a parasite counting accuracy higher than 99%. This performance could be obtained also by combining 13 games from players trained for 1 minute. Exhaustive computations measured the parasite counting accuracy for all players as a function of the number of games considered and the experience of the players. In addition, we propose a mathematical equation that accurately models the collective parasite counting performance. Conclusions: This research validates the online gaming approach for crowdsourced counting of malaria parasites in images of thick blood films. The findings support the conclusion that nonexperts are able to rapidly learn how to identify the typical features of malaria parasites in digitized thick blood samples and that combining the analyses of several users provides similar parasite counting accuracy rates as those of expert microscopists. This experiment illustrates the potential of the crowdsourced gaming approach for performing routine malaria parasite quantification, and more generally for solving biomedical image analysis problems, with future potential for telediagnosis related to global health challenges.
Resumo:
Stochastic model updating must be considered for quantifying uncertainties inherently existing in real-world engineering structures. By this means the statistical properties,instead of deterministic values, of structural parameters can be sought indicating the parameter variability. However, the implementation of stochastic model updating is much more complicated than that of deterministic methods particularly in the aspects of theoretical complexity and low computational efficiency. This study attempts to propose a simple and cost-efficient method by decomposing a stochastic updating process into a series of deterministic ones with the aid of response surface models and Monte Carlo simulation. The response surface models are used as surrogates for original FE models in the interest of programming simplification, fast response computation and easy inverse optimization. Monte Carlo simulation is adopted for generating samples from the assumed or measured probability distributions of responses. Each sample corresponds to an individual deterministic inverse process predicting the deterministic values of parameters. Then the parameter means and variances can be statistically estimated based on all the parameter predictions by running all the samples. Meanwhile, the analysis of variance approach is employed for the evaluation of parameter variability significance. The proposed method has been demonstrated firstly on a numerical beam and then a set of nominally identical steel plates tested in the laboratory. It is found that compared with the existing stochastic model updating methods, the proposed method presents similar accuracy while its primary merits consist in its simple implementation and cost efficiency in response computation and inverse optimization.
Resumo:
This work compared the quantification of soluble fibre in feeds using different chemical and in vitro approaches, and studied the potential interference between soluble fibre and mucin determinations. Six ingredients: sugar beet pulp (SBP), SBP pectins, insoluble SBP, wheat straw, sunflower hulls and lignocellulose, and seven rabbit diets, differing in soluble fibre content, were evaluated. In experiment 1, ingredients and diets were analyzed for total dietary fibre (TDF), insoluble dietary fibre (IDF), soluble dietary fibre (SDF), aNDFom (corrected for protein, aNDFom-cp) and 2-step pepsin/pancreatin in vitro DM indigestibility (corrected for ash and protein, ivDMi2). Soluble fibre was estimated by difference using three procedures: TDF?IDF (SDFIDF), TDF?ivDMi2 (SDFivDMi2), and TDF?aNDFom-cp (SDFaNDFom-cp). Soluble fibre determined directly (SDF) or by difference as SDFivDMi2 were not different (109 g/kg DM, on average). However, when it was calculated as SDFaNDFom-cp the value was 40% higher (153 g/kg DM, P menor que 0.05), whereas SDFIDF (124 g/kg DM) did not differ from any of the other methods. The correlation between the four methods was high (r ? 0.96; P ? 0.001; n = 13), but it decreased or even disappeared when SBP pectins and SBP were excluded and a lower and more narrow range of variation of soluble fibre was used. In experiment 2, the ivDMi2 using crucibles (reference method) were compared to those made using individual or collective ankom bags in order to simplify the determination of SDFivDMi2. The ivDMi2 was not different when using crucibles or individual or collective ankom bags. In experiment 3, the potential interference between soluble fibre and intestinal mucin determinations was studied using rabbit intestinal raw mucus, digesta and SBP pectins, lignocelluloses and a rabbit diet. An interference was observed between the determinations of soluble fibre and crude mucin, as contents of TDF and apparent crude mucin were high in SBP pectins (994 and 709 g/kg DM) and rabbit intestinal raw mucus (571 and 739 g/kg DM). After a pectinase treatment, the coefficient of apparent mucin recovery of SBP pectins was close to zero, whereas that of rabbit mucus was not modified. An estimation of the crude mucin carbohydrates retained in digesta TDF is proposed to correct TDF and soluble fibre digestibility. In conclusion, the values of soluble fibre depend on the methodology used. The contamination of crude mucin with soluble fibre is avoided using pectinase.
Resumo:
Intensity and volume of training in Artisti Gymnastics are increasing as the sooner athlete's age of incorporation creating some disturbance in them.
Resumo:
Cuantificación de la actividad física en mujeres mayores.