978 resultados para Field Testing
Resumo:
In this work project we study the tail properties of currency returns and analyze whether changes in the tail indices of these series have occurred over time as a consequence of turbulent periods. Our analysis is based on the methods introduced by Quintos, Fan and Phillips (2001), Candelon and Straetmans (2006, 2013), and their extensions. Specifically, considering a sample of daily data from December 31, 1993 to February 13, 2015 we apply the recursive test in calendar time (forward test) and in reverse calendar time (backward test) and indeed detect falls and rises in the tail indices, signifying increases and decreases in the probability of extreme events.
Resumo:
A pictorial field guide to the 30 species of sandfly most commonly encountered in Pará State is presented, based on the easily recognised external characters of the length of the 5th palpal segment, thoracic infuscation, abdominal colour and head and body size. In most cases this allows identification to the species. In others, especially with females, it gives an indication of the species, which may then be confirmed with data from more detailed taxanomix studies. This type of field guide helps in teaching, rapid sorting of flies prior to dissection and in acquainting visitors with the variety of species present in a given area.A rapid technique for the taxonomic sorting of unmounted, freshly killed female sandflies is required, prior to the dissection of large numbers of a particular species. Such a method is useful in areas where numerous species occur in studies on natural flagellate infections, age determination and for ecological studies. With the above points in mind a pictorial field guide has been designed that enables the identification of unmounted, unmacerated specimens of the 30 more commonly encountered species of phleboto-mine sandflies (***) in Pará State, North Brazil. It is based on the easily recognised external characters of the length of the 5th palpal segment, thoracic infuscation, ad-dominal colour and proboscis and body size.Taxonomy of male phlebotomine sandflies is based on the structure of the genitalia and, as most of this is external, a wholly external character key is readily made. Female taxonomy, however, is based on the internal character of the cibarium, pharynx and sperma thecae. In order to produce an external character key we therefore return to an unso phisticated "phlebotometry" (see Martins et al., 1978 p. 3 for review), using relative lengths of the proboscis, palpal segments and body, along with the degree of infuscation. Ihis idea is not new; indeed many sandfly specialists presently use external characters to separate certain species (H. Fraiha, R. P. Lane, P. D. Ready, D. G. Young and R. D. Ward personal communications 1983 & 1984).A key used to separate five anthropophillic sandflies by Biagi (1966), in Mexico, was based mainly on palpal segment length and infuscation. Floch and Abonnenc (1952) stressed the use of relative lengths of palpal segments in their keys to the sandflies of French Guiana, and four members of the shannoni group have been similarly separated according to the degree of infuscation by Morales et al. (1982). The use of thoracic infuscation as a reliable character seems to be gaining favour, having been used by young & Fairchild (1974) and Ready & Fraiha (1981). Indeed Chariotis 1974) showed the usefulness of thoracic infuscation to sepenate 7 anthropophillic species, during studies onvesicular stomatitis in Panama. Identification using external characters is essential for work on viral isolations from sandflies, where bulk samples of whole sandflies are used.Perhaps the major advantage of a simple visual guide is for teaching purposes. Technical staff in this lnstitute are able to identify most of the species they encounter without having to use the standard, more unwieldly (and in many cases unavailable) internal character keys, and the guides presented below have allowed rapid species sorting prior to the dissection of sandflies in our leismaniasis study areas (Ryan et at. ,1985).
Resumo:
This paper presents the design and the prototype implementation of a three-phase power inverter developed to drive a motor-in-wheel. The control system is implemented in a FPGA (Field Programmable Gate Array) device. The paper describes the Field Oriented Control (FOC) algorithm and the Space Vector Modulation (SVM) technique that were implemented. The control platform uses a Spartan-3E FPGA board, programmed with Verilog language. Simulation and experimental results are presented to validate the developed system operation under different load conditions. Finally are presented conclusions based on the experimental results.
Resumo:
Electric Vehicles (EVs) are increasingly used nowadays, and different powertrain solutions can be adopted. This paper describes the control system of an axial flux Permanent Magnet Synchronous Motor (PMSM) for EVs powertrain. It is described the implemented Field Oriented Control (FOC) algorithm and the Space Vector Modulation (SVM) technique. Also, the mathematical model of the PMSM is presented. Both, simulation and experimental, results with different types of mechanical load are presented. The experimental results were obtained using a laboratory test bench. The obtained results are discussed.
Resumo:
COST TU 1404
Resumo:
COST Action TU 1404
Resumo:
COST TU 1404
Resumo:
In the investigation and diagnosis of damages to historical masonry structures, the state of stress of the masonry is an important characteristic that must be determined with as much accuracy as possible. Flat-jack testing is a traditional method used to determine the state of stress in historical masonry structures. However, when irregular masonry is tested the method can cause damage to the masonry units and the accuracy of the method is reduced. An enhanced technique, called tube-jack testing, is being developed at the University of Minho to reduce the damage caused during testing and improve the accuracy when used on irregular masonry. This method uses multiple cylindrical jacks inserted in a line of holes drilled in the mortar joints of the masonry, avoiding damage to the masonry units. Concurrently with the development of tube-jack testing, the effect of stress state on sonic testing is being studied. Sonic testing is often used to determine locations of voids and damage in masonry. The focus of these studies was to determine if the state of stress is influencing the sonic test results. In this paper the results of tube-jack testing and sonic testing on masonry walls, built for the purpose of this study in the laboratory, loaded in compression is presented. The tube-jack testing is used to estimate the state of stress in the masonry and the sonic test results are evaluated based on the effect of the applied load on the wall. Future testing and study are suggested for continued development of these test methods.
Resumo:
One of the most popular approaches to path planning and control is the potential field method. This method is particularly attractive because it is suitable for on-line feedback control. In this approach the gradient of a potential field is used to generate the robot's trajectory. Thus, the path is generated by the transient solutions of a dynamical system. On the other hand, in the nonlinear attractor dynamic approach the path is generated by a sequence of attractor solutions. This way the transient solutions of the potential field method are replaced by a sequence of attractor solutions (i.e., asymptotically stable states) of a dynamical system. We discuss at a theoretical level some of the main differences of these two approaches.
Resumo:
Polymer binder modification with inorganic nanomaterials (NM) could be a potential and efficient solution to control matrix flammability of polymer concrete (PC) materials without sacrificing other important properties. Occupational exposures can occur all along the life cycle of a NM and “nanoproducts” from research through scale-up, product development, manufacturing, and end of life. The main objective of the present study is to analyse and compare different qualitative risk assessment methods during the production of polymer mortars (PM) with NM. The laboratory scale production process was divided in 3 main phases (pre-production, production and post-production), which allow testing the assessment methods in different situations. The risk assessment involved in the manufacturing process of PM was made by using the qualitative analyses based on: French Agency for Food, Environmental and Occupational Health & Safety method (ANSES); Control Banding Nanotool (CB Nanotool); Ecole Polytechnique Fédérale de Lausanne method (EPFL); Guidance working safely with nanomaterials and nanoproducts (GWSNN); Istituto Superiore per la Prevenzione e la Sicurezza del Lavoro, Italy method (ISPESL); Precautionary Matrix for Synthetic Nanomaterials (PMSN); and Stoffenmanager Nano. It was verified that the different methods applied also produce different final results. In phases 1 and 3 the risk assessment tends to be classified as medium-high risk, while for phase 2 the more common result is medium level. It is necessary to improve the use of qualitative methods by defining narrow criteria for the methods selection for each assessed situation, bearing in mind that the uncertainties are also a relevant factor when dealing with the risk related to nanotechnologies field.
Resumo:
This work intends to present a newly developed test setup for dynamic out-of-plane loading using underWater Blast Wave Generators (WBWG) as loading source. Underwater blasting operations have been, during the last decades, subject of research and development of maritime blasting operations (including torpedo studies), aquarium tests for the measurement of blasting energy of industrial explosives and confined underwater blast wave generators. WBWG allow a wide range for the produced blast impulse and surface area distribution. It also avoids the generation of high velocity fragments and reduces atmospheric sound wave. A first objective of this work is to study the behavior of masonry infill walls subjected to blast loading. Three different masonry walls are to be studied, namely unreinforced masonry infill walls and two different reinforcement solutions. These solutions have been studied previously for seismic action mitigation. Subsequently, the walls will be simulated using an explicit finite element code for validation and parametric studies. Finally, a tool to help designers to make informed decisions on the use of infills under blast loading will be presented.
Resumo:
The TRMM-LBA field campaign was held during the austral summer of 1999 in southwestern Amazonia. Among the major objectives, was the identification and description of the diurnal variability of rainfall in the region, associated with the different rain producing weather systems that occurred during the January-February season. By using a network of 40 digital rain gauges implemented in the state of Rondônia, and together with observations and analyses of circulation and convection, it was possible to identify details of the diurnal cycle of rainfall and the associated rainfall mechanisms. Rainfall episodes were characterized by regimes of "low-level easterly" and "westerly" winds in the context of the large-scale circulation. The westerly regime is related to an enhanced South Atlantic Convergence Zone (SACZ) and an intense and/or wide Low Level Jet (LLJ) east of the Andes, which can extend eastward towards Rondônia, even though some westerly regime episodes also show a LLJ that remains close to the foothill of the Andes. The easterly regime is related to easterly propagating systems (e.g. squall-lines) with possible weakened or less frequent LLJs and a suppressed SACZ. Diurnal variability of rainfall during westerly surface wind regime shows a characteristic maximum at late afternoon followed by a relatively weaker second maximum at early evening (2100 Local Standard Time LST). The easterly regime composite shows an early morning maximum followed by an even stronger maximum in the afternoon.
Resumo:
Companies and researchers involved in developing miniaturized electronic devices face the basic problem of the needed batteries size, finite life of time and environmental pollution caused by their final deposition. The current trends to overcome this situation point towards Energy Harvesting technology. These harvesters (or scavengers) store the energy from sources present in the ambient (as wind, solar, electromagnetic, etc) and are costless for us. Piezoelectric devices are the ones that show a higher power density, and materials as ceramic PZT or polymeric PVDF have already demonstrated their ability to act as such energy harvester elements. Combinations between piezoelectric and electromagnetic mechanism have been also extensively investigated. Nevertheless, the power generated by these combinations is limited under the application of small magnetic fields, reducing the performance of the energy harvester [1]. In the last years the appearance of magnetoelectric (ME) devices, in which the piezoelectric deformation is driven by the magnetostrictive element, enables to extract the energy of very small electromagnetic signals through the generated magnetoelectric voltage at the piezoelectric element. However, very little work has been done testing PVDF polymer as piezoelectric constituent of the ME energy harvester device, and only to be proposed as a possibility of application [2]. Among the advantages of using piezopolymers for vibrational energy harvesting we can remember that they are ductile, resilient to shock, deformable and lightweight. In this work we demonstrate the feasibility of using magnetostrictive Fe-rich magnetic amorphous alloys/piezoelectric PVDF sandwich-type laminated ME devices as energy harvesters. A very simple experimental set-up will show how these laminates can extract energy, in amounts of μW, from an external AC field.
Resumo:
The growing concerns regarding the environmental impact generated by the use of inorganic materials in different fields of application increased the interest towards products based on materials with low environmental impact. In recent years, researchers have turned their attention towards the development of materials obtained from renewable sources, easily recoverable or biodegradable at the end of use. In the field of civil structures, a few attempts have been done to replace the most common composites (e.g. carbon and glass fibers) by materials less harmful to the environment, as natural fibers. This work presents a comprehensive experimental research on the mechanical performance of natural fibers for the strengthening of masonry constructions. Flax, hemp, jute, sisal and coir fibers have been investigated both from physical and mechanical points of view. The fibers with better performance were tested together with three different matrices (two of organic nature) in order to produce composites. These experimental results represent a useful database for understanding the potentialities of natural fibers as strengthening systems.
Resumo:
Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.