939 resultados para Fe3 immobilized


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immobilized cell utilization in tower-type bioreactor is one of the main alternatives being studied to improve the industrial bioprocess. Other alternatives for the production of beta -lactam antibiotics, such as a cephalosporin C fed-batch p recess in an aerated stirred-tank bioreactor with free cells of Cepha-losporium acremonium or a tower-type bioreactor with immobilized cells of this fungus, have proven to be more efficient than the batch profess. In the fed-batch process, it is possible to minimize the catabolite repression exerted by the rapidly utilization of carbon sources (such as glucose) in the synthesis of antibiotics by utilizing a suitable flow rate of supplementary medium. In this study, several runs for cephalosporin C production, each lasting 200 h, were conducted in a fed-batch tower-type bioreactor using different hydrolyzed sucrose concentrations, For this study's model, modifications were introduced to take into account the influence of supplementary medium flow rate. The balance equations considered the effect of oxygen limitation inside the bioparticles. In the Monod-type rate equations, eel concentrations, substrate concentrations, and dissolved oxygen were included as reactants affecting the bioreaction rate. The set of differential equations was solved by the numerical method, and the values of the parameters were estimated by the classic nonlinear regression method following Marquardt's procedure with a 95% confidence interval. The simulation results showed that the proposed model fit well with the experimental data,and based on the experimental data and the mathematical model an optimal mass flow rate to maximize the bioprocess productivity could be proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A label-free electrochemical detection method for DNA hybridization based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes is reported. Synthetic single-stranded 27-mer oligonucleotides (probe) have been immobilized at 2,5-bis(2-thienyl)-N-(3-phosphorylpropyl)pyrrole film formed by electropolymerization on the previously formed polypyrrole layer. The 27- or 18-mer target oligonucleotides were monitored via the electrochemically driven anion exchange of the inner polypyrrole film. The performance of the miniaturized DNA biosensor system was studied in respect to selectivity, sensitivity, reproducibility, and regeneration of the sensor. Control experiments were performed with a noncomplementary target of 27-mer DNA and 12 base-pair mismatched 18-mer sequences, respectively, and did not show any unspecific binding. Under optimized experimental conditions, the label-free electrochemical biosensor enabled the detection limits of 0.16 and 3.5 fmol for the 18- and 2 7-mer DNA strand, respectively. Furthermore, we demonstrate reusability of the electrochemical DNA biosensor after successful recovery of up to 100% of the original signal by regenerating the DNA label-free electrode with 50 mM HCl at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

dThe detection of aromatic compounds from pesticides and industrial wastewater has become of great interest, since these compounds withstand chemical oxidation and biological degradation, accumulating in the environment. In this work, a highly sensitive biosensor for detecting catechol was obtained with the immobilization of Cl-catechol 1,2-dioxygenase (CCD) in nanostructured films. CCD layers were alternated with poly(amidoamine) generation 4 (PAMAM G4) dendrimer using the electrostatic layer-by-layer (LbL) technique. Circular dichroism (CD) measurements indicated that the immobilized CCD preserved the same conformation as in solution. The thickness of the very first CCD layers in the LbL films was estimated at ca. 3.6 nm, as revealed by surface plasmon resonance (SPR). PAMAM/CCD 10-bilayer films were employed in detecting diluted catechol solutions using either an optical or electrical approach. Due to the mild immobilization conditions employed, especially regarding the pH and ionic strength of the dipping solutions, CCD remained active in the films for periods longer than 3 weeks. The optical detection comprised absorption experiments in which the formation of cis-cis muconic acid, resulting from the reaction between CCD and catechol, was monitored by measuring the absorbance at 260 nm after film immersion in catechol solutions. The electrical detection was carried out using LbL films deposited onto gold-interdigitated electrodes immersed in aqueous solutions at different catechol concentrations. Using impedance spectroscopy in a broad frequency range (1Hz-1kHz), we could detect catechol in solutions at concentrations as low as 10(-10) M. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different procedures for obtaining a needle biosensor for the determination of glucose to be inserted subcutaneously in vivo, have been compared. Platinum wires with a diameter of 75 mum, teflon-coated were inserted in hypodermic needles and fixed with a two-component epoxy resin. Using a dip-coating procedure, several layers were deposited on electrodes. The first coating was cellulose acetate, the second was immobilized glucose oxidase (GOD) mixed with bovine serum albumin (BSA) and glutaraldheyde, the third coating was a polyurethane coating obtained with commercially available products. A large number of electrodes have been tried and statistically evaluated but they seem to be affected by poor reproducibility evidenced by a large spreading in successive calibration curves. Then, the polyurethane coating has been replaced by a thin polycarbonate membrane salinized and fixed on the tip of the needle. Reproducible results were achieved and first results of in vivo measurements on rabbits are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes a spectrophotometric method for the determination of hydrogen peroxide during photodegradation reactions. The method is based on the reaction of H2O2 with amonium metavanadate in acidic medium, which results in the formation of a red-orange color peroxovanadium cation, with maximum absorbance at 450 nm. The method was optimized using the multivariate analysis providing the minimum concentration of vanadate (6.2 mmol L-1) for the maximum absorbance signal. Under these conditions, the detection limit is 143 mu mol L-1. The reaction product showed to be very stable for samples of peroxide concentrations up to 3 mmol L-1 at room temperature during 180 h. For higher concentrations however, samples must be kept refrigerated (4 degrees C) or diluted. The method showed no interference of Cl- (0.2-1.3 mmol L-1), NO3- (0.3-1.0 mmol L-1), Fe3+, (0.2-1.2 mmol L-1) and 2,4-dichlorophenol (DCP) (0.2-1.0 mmol L-1). When compared to iodometric titration, the vanadate method showed a good agreament. The method was applied for the evaluation of peroxide consumption during photo-Fenton degradation of 2,4-dichlorophenol using blacklight irradiation. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pt-Ir microelectrode modified through one step, electropolymerization is proposed for the isocitrate amperometric biosensor construction. The enzyme (isocitrate dehydrogenase-ICDH), coenzyme (NADP(+)) and mediator (Meldola's Blue) were immobilized onto the microelectrode surface in one step from a PIPES buffer solution containing pyrrole. The optimized experimental conditions were 25 cycles of cyclic voltammetric in a solution containing 3.58 10(-5) mol l(-1) of mediator, 3.51 10(-4) mol l(-1) of coenzyme and 2.68 U ml(-1) of enzyme. In contrast to the biosensor for isocitrate reported in literature, just one enzyme was immobilized and no coenzyme addition in the solution of analysis was necessary. Catalytic currents were proportional to the isocitrate concentration between 7.7 10(-6) and 1.04 10(-4) mol l(-1), showing good repeatability. The detection limit of the proposed biosensor was 3.50 10(-6) mol l(-1), the response time was lower than 20 s, the lifetime was about 30 determinations and no significant interference of sugars and citric acid was verified. Orange juice samples were analysed by both methodology biosensor and spectrophotometric commercial kit, and the obtained results presented a good correlation. The data demonstrated that the developed biosensor is suitable for isocitrate determination in orange juice without matrix interferences. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silica gel surface was chemically modified with beta-diketoamine groups by reacting the silanol from the silica surface with 3-aminopropyl-triethoxysilane and 3-bromopentanedione, With this material, copper ions were adsorbed from aqueous solutions, the chemical analysis of the silica-gel-immobilized acetylacetone provided a quantity of 0.67 mmol g(-1) of organic groups attached to the support and 0.63 mmol g(-1) of copper, This material was used as a stationary phase in IMAC (immobilized metal affinity chromatography), to separate alpha-lactoalbumin from bovine milk whey, the results showed an efficient separation in the chromatographic column, the possibility of reutilization of the stationary phase was also investigated. (C) 1997 Academic Press

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrical properties of natural alexandrite (BeAl2O4:Cr3+) are investigated by the thermally stimulated depolarization current (TSDC) technique. Samples are submitted to consecutive annealing processes and TSDC is carried out after each annealing, yielding bands with different parameters. These bands are fitted by a continuous distribution of relaxation parameters: activation energy and pre-exponential factor of the Arrhenius equation. It has been observed that annealing influences the dipole relaxation behavior, since it promotes a modification of Fe3+ and C3+ impurity distributions on sites of distinct symmetry: Al-1 and Al-2. In order to have a reference for comparison, TSDC is also carried out on a synthetic alexandrite sample, where the only impurity present is Cr3+ ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work demonstrates, for the first time. a time-resolved electron paramagnetic resonance (EPR) monitoring of a chemical reaction occurring in a polymeric structure. The progress of the coupling of a N-alpha-tert-butyloxycarbonyl-2.2.6.6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (Boc-TOAC) spin probe to a model peptide-resin was followed through EPR spectra. Progressive line broadening of EPR peaks was observed, indicative of an increased population of immobilized spin probe molecules attached to the solid support. The time for spectral stabilization of this process coincided with that determined in a previous Coupling study. thereby validating this in situ quantitative monitoring of the reaction. In addition, the influence of polymer swelling degree and solvent viscosity, as well as of the steric hindrance within beads. on the rate of coupling reaction was also addressed. A deeper evaluation of the latter effect was possible by determining unusual polymer parameters such as the average site-site distance and site-concentration within resin beads in each solvent system. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biochemical computing is an emerging field of unconventional computing that attempts to process information with biomolecules and biological objects using digital logic. In this work we survey filtering in general, in biochemical computing, and summarize the experimental realization of an and logic gate with sigmoid response in one of the inputs. The logic gate is realized with electrode-immobilized glucose-6-phosphate dehydrogenase enzyme that catalyzes a reaction corresponding to the Boolean and functions. A kinetic model is also developed and used to evaluate the extent to which the performance of the experimentally realized logic gate is close to optimal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alkaline earth stannates have recently become important materials in ceramic technology due to its application as humidity sensor. In this work, alkaline earth stannates doped with Fe3+ were synthesized by the polymeric precursor method, with calcination at 300 A degrees C/7 h and between 400 and 1100 A degrees C/4 h. The powder precursors were characterized by TG/DTA after partial elimination of carbon. Characterization after the second calcination step was done by X-ray diffraction, infrared spectroscopy, and UV-vis spectroscopy. Results confirmed the formation of the SrSnO3:Fe with orthorhombic perovskite structure, besides SrCO3 as secondary phase. Crystallization occurred at 600 A degrees C, being much lower than the crystallization temperature of perovskites synthesized by solid state reaction. The analysis of TG curves indicated that the phase crystallization was preceded by two thermal decomposition steps. Carbonate elimination occurred at two different temperatures, around 800 A degrees C and above 1000 A degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)