906 resultados para Faults detect
Resumo:
Several tests have been devised in an attempt to detect behaviour modification due to training, supplements or diet in horses. These tests rely on subjective observations in combination with physiological measures, such as heart rate (HR) and plasma cortisol concentrations, but these measures do not definitively identify behavioural changes. The aim of the present studies was to develop an objective and relevant measure of horse reactivity. In Study 1, HR responses to auditory stimuli, delivered over 6 days, designed to safely startle six geldings confined to individual stalls was studied to determine if peak HR, unconfounded by physical exertion, was a reliable measure of reactivity. Both mean (±SEM) resting HR (39.5 ± 1.9 bpm) and peak HR (82 ± 5.5 bpm) in response to being startled in all horses were found to be consistent over the 6 days. In Study 2, HR, plasma cortisol concentrations and speed of departure from an enclosure (reaction speed (RS)) in response to a single stimulus of six mares were measured when presented daily over 6 days. Peak HR response (133 ± 4 bpm) was consistent over days for all horses, but RS increased (3.02 ± 0.72 m/s on Day 1 increasing to 4.45 ± 0.53 m/s on Day 6; P = 0.005). There was no effect on plasma cortisol, so this variable was not studied further. In Study 3, using the six geldings from Study 1, the RS test was refined and a different startle stimulus was used each day. Again, there was no change in peak HR (97.2 ± 5.8 bpm) or RS (2.9 ± 0.2 m/s on Day 1 versus 3.0 ± 0.7 m/s on Day 6) over time. In the final study, mild sedation using acepromazine maleate (0.04 mg/kg BW i.v.) decreased peak HR in response to a startle stimulus when the horses (n = 8) were confined to a stall (P = 0.006), but not in an outdoor environment when the RS test was performed. However, RS was reduced by the mild sedation (P = 0.02). In conclusion, RS may be used as a practical and objective test to measure both reactivity and changes in reactivity in horses.
Resumo:
Background: The Vulnerable Elders Survey-13 (VES-13) is increasingly used to screen for older patients who can proceed to intensive chemotherapy without further comprehensive assessment. This study compared the VES-13 determination of fitness for treatment with the oncologist's assessments of fitness. Method: Sample: Consecutive series of solid tumour patients ≥65 years (n=175; M=72; range=65-86) from an Australian cancer centre. Patients were screened with the VES-13 before proceeding to usual treatment. Blinded to screening, oncologists concurrently predicted patient fitness for chemotherapy. A sample of 175 can detect, with 90% power, kappa coefficients of agreement between VES-13 and oncologists’ assessments >0.90 ("almost perfect agreement"). Separate backward stepwise logistic regression analyses assessed potential predictors of VES-13 and oncologists’ ratings of fitness. Results: Kappa coefficient for agreement between VES-13 and oncologists’ ratings of fitness was 0.41 (p<0.001). VES-13 and oncologists’ assessments agreed in 71% of ratings. VES-13 sensitivity = 83.3%; specificity = 57%; positive predictive value = 69%; negative predictive value = 75%. Logistic regression modelling indicated that the odds of being vulnerable to chemotherapy (VES-13) increased with increasing depression (OR=1.42; 95% CI: 1.18, 1.71) and decreased with increased functional independence assessed on the Bartel Index (OR=0.82; CI: 0.74, 0.92) and Lawton instrumental activities of daily living (OR=0.44; CI: 0.30, 0.65); RSquare=.65. Similarly, the odds of a patient being vulnerable to chemotherapy, when assessed by physicians, increased with increasing age (OR=1.15; CI: 1.07, 1.23) and depression (OR=1.23; CI: 1.06, 1.43), and decreased with increasing functional independence (OR=0.91; CI: 0.85, 0.98); RSquare=.32. Conclusions: Our data indicate moderate agreement between VES-13 and clinician assessments of patients’ fitness for chemotherapy. Current ‘one-step’ screening processes to determine fitness have limits. Nonetheless, screening tools do have the potential for modification and enhanced predictive properties in cancer care by adding relevant items, thus enabling fit patients to be immediately referred for chemotherapy.
Resumo:
Background There is growing consensus that a multidisciplinary, comprehensive and standardised process for assessing the fitness of older patients for chemotherapy should be undertaken to determine appropriate cancer treatment. Aim This study tested a model of cancer care for the older patient incorporating Comprehensive Geriatric Assessment (CGA), which aimed to ensure that 'fit' individuals amenable to active treatment were accurately identified; 'vulnerable' patients more suitable for modified or supportive regimens were determined; and 'frail 'individuals who would benefit most from palliative regimens were also identified and offered the appropriate level of care. Methods A consecutive-series n=178 sample of patients >65 years was recruited from a major Australian cancer centre. The following instruments were administered by an oncogeriatric nurse prior to treatment: Vulnerable Elders Survey-13; Cumulative Illness Rating Scale (Geriatric); Malnutrition Screening Tool; Mini-mental State Examination; Geriatric Depression Scale; Barthel Index; and Lawton Instrumental Activities of Daily Living Scale. Scores from these instruments were aggregated to predict patient fitness, vulnerability or frailty for chemotherapy. Physicians provided a concurrent (blinded) prediction of patient fitness, vulnerability or frailty based on their clinical assessment. Data were also collected on actual patient outcomes (eg treatment completed as predicted, treatment reduced) during monthly audits of patient trajectories. Data analysis Data analysis is underway. A sample of 178 is adequate to detect, with 90% power, kappa coefficients of agreement between CGA and physician assessments of K>0.90 ("almost perfect agreement"). Primary endpoints comprise a) whether the nurse-led CGA determination of fit, vulnerable or frail agrees with the oncologist's assessments of fit, vulnerable or frail and b) whether the CGA and physician assessments accurately predict actual patient outcomes. Conclusion An oncogeriatric nurse-led model of care is currently being developed from the results. We conclude with a discussion of the pivotal role of nurses in CGA-based models of care.
Resumo:
Purpose: To present the results of a mixed-method study comparing the level of agreement of a two-phased, nurse-administered Comprehensive Geriatric Assessment (CGA) with current methods that assess the fitness for chemotherapy of older cancer patients. A nurse-led model of multidisciplinary cancer care based on the results is also described. Methods: The two phases comprised initial screening by a nurse with the Vulnerable Elders Survey-13 [VES-13], followed by nurse administration of a detailed CGA. Both phases were linked to a computerised algorithm categorising the patient as ‘fit’, ‘vulnerable’ or ‘frail’. The study determined the level of agreement between VES-13- and CGA-determined categories; and between the CGA and the physicians’ assessments. It also compared the CGA’s predictive abilities in terms of subsequent treatment toxicity; while interviews determined the acceptability of the nurse-led procedure from key stakeholders' perspectives. Results: Data collection was completed in December 2011. The results will be presented at the conference. A consecutive-series n=170 will be enrolled, 33% of whom are ‘fit’; 33% ‘vulnerable’; and 33% ‘too frail’ for treatment. This sample can detect, with 90% power, kappa coefficients of agreement of ≥ 0.70 or higher (“substantial agreement”). Fitness sub-group comparisons of agreement between the medical oncologist and the nurse assessments can detect kappa estimates of Κ ≥ 0.80 with the same power. Conclusion: The results have informed a nurse-led model of cancer care. It meets a clear need to develop, implement and test a nurse-led, robust, evidence-based, clinically-justifiable and economically-feasible CGA process that has relevance in national and international contexts.
Resumo:
Here we report an ultrasensitive method for detecting bio-active compounds in biological samples by means of functionalised nanoparticles interrogated by surface enhanced Raman spectroscopy (SERS). This method is applicable to the recovery and detection of many diagnostically important peptidyl analytes such as insulin, human growth hormone, growth factors (IGFs) and erythropoietin (EPO), as well as many small molecule analytes and metabolites. Our method, developed to detect EPO, demonstrates its utility in a complex yet well defined biological system. Recombinant human EPO (rhEPO) and EPO analogues have successfully been used to treat anaemia in end-stage renal failure, chronic disorders and infections, cancer and AIDS. Current methods for EPO testing are lengthy, laborious and relatively insensitive to low concentrations. In our rapid screening methodology, gold nanoparticles were functionalised with anti-EPO antibodies to provide very high selectivity towards the EPO protein in urine. These “smart sensor” nanoparticles interact with and trap EPO. Subsequent SERS screening allows for the detection and quantisation of ultra trace amounts (<<10-15 M) of EPO in urine samples with minimal sample preparation. We present data showing that the SERS spectrum differentiates between human endogenous EPO and rhEPO in unpurified urine, and potentially distinguishes between purified EPO isoforms. The elimination of sample preparation and direct screening in biological fluids significantly reduces the time required by current methods. Antibody recognition against a variety of biological targets and the availability of portable commercial SERS analysers for rapid onsite testing suggest broad diagnostic applicability in a flexible analytical platform.
Resumo:
Objective: To compare proteins related to Alzheimer disease ( AD) in the frontal cortex and cerebellum of subjects with early-onset AD (EOAD) with or without presenilin 1 (PS1) mutations with sporadic late-onset AD ( LOAD) and nondemented control subjects. Methods: Immunohistochemistry, immunoblot analysis, and ELISA were used to detect and assess protein levels in brain. Results: In EOAD and to a lesser extent in LOAD, there was increased amyloid beta (Abeta) deposition (by immunohistochemistry), increased soluble Abeta (by immunoblot analysis), and specific increases in Abeta(40) and Abeta(42) ( by ELISA) in the frontal cortex and, in some cases, in the cerebellum. Surprisingly, immunoblot analysis revealed reduced levels of PS1 in many of the subjects with EOAD with or without PS1 mutations. In those PS1 mutation-bearing subjects with the highest Abeta, PS1 was barely, if at all, detectable. This decrease in PS1 was specific and not attributable solely to neuronal loss because amyloid precursor protein (APP) and the PS1-interacting protein beta-catenin levels were unchanged. Conclusions: This study shows that in the frontal cortex and cerebellum from Alzheimer disease patients harboring certain presenilin 1 mutations, high levels of amyloid beta are associated with low levels of presenilin 1. The study provides the premise for further investigation of mechanisms underlying the downregulation of presenilin 1, which may have considerable pathogenic and therapeutic relevance.
Resumo:
Objective: Comprehensive, accurate information about road crashes and related trauma is a prerequisite for identification and control of risk factors as well as for identifying faults within the broader road safety system. Quality data and appropriate crash investigation are critical in reducing the road toll that is rapidly growing in much of the developing world, including Pakistan. This qualitative research explored the involvement of social and cultural factors (in particular, fatalism) in risky road use in Pakistan. The findings highlight a significant issue, previously unreported in the road safety literature, namely, the link between fatalistic beliefs and inaccurate reporting of road crashes. Method: Thirty interviews (one-to one) were conducted by the first author with police officers, drivers, policy makers and religious orators in three Pakistani cities. Findings: Evidence emerged of a strong link between fatalism and the under-reporting of road crashes. In many cases, crashes and related road trauma appear to go unreported because a crash is considered to be one’s fate and, therefore, beyond personal control. Fate was also implicated in the practice of reconciliation between parties after a crash without police involvement and the seeking and granting of pardon for a road death. Conclusions: These issues represent additional factors that can contribute to under-reporting of crashes and associated trauma. Together, they highlight complications involved in establishing the true cost of road trauma in a country such as Pakistan and the difficulties faced when attempting to promote scientifically-based road safety information to counteract faith-based beliefs.
Resumo:
Skin is the largest, and arguably, the most important organ of the body. It is a complex and multi-dimensional tissue, thus making it essentially impossible to fully model in vitro in conventional 2-dimensional culture systems. In view of this, rodents or pigs are utilised to study wound healing therapeutics or to investigate the biological effects of treatments on skin. However, there are many differences between the wound healing processes in rodents compared to humans (contraction vs. re-epithelialisation) and there are also ethical issues associated with animal testing for scientific research. Therefore, the development of skin equivalent (HSE) models from surgical discard human skin has become an important area of research. The studies in this thesis compare, for the first time, native human skin and the epidermogenesis process in a HSE model. The HSE was reported to be a comparable model for human skin in terms of expression and localisation of key epidermal cell markers. This validated HSE model was utilised to study the potential wound healing therapeutic, hyperbaric oxygen (HBO) therapy. There is a significant body of evidence suggesting that lack of cutaneous oxygen results in and potentiates the chronic, non-healing wound environment. Although the evidence is anecdotal, HBO therapy has displayed positive effects on re-oxygenation of chronic wounds and the clinical outcomes suggest that HBO treatment may be beneficial. Therefore, the HSE was subjected to a daily clinical HBO regime and assessed in terms of keratinocyte migration, proliferation, differentiation and epidermal thickening. HBO treatment was observed to increase epidermal thickness, in particular stratum corneum thickening, but it did not alter the expression or localisation of standard epidermal cell markers. In order to elucidate the mechanistic changes occurring in response to HBO treatment in the HSE model, gene microarrays were performed, followed by qRT-PCR of select genes which were differentially regulated in response to HBO treatment. The biological diversity of the HSEs created from individual skin donors, however, overrode the differences in gene expression between treatment groups. Network analysis of functional changes in the HSE model revealed general trends consistent with normal skin growth and maturation. As a more robust and longer term study of these molecular changes, protein localisation and expression was investigated in sections from the HSEs undergoing epidermogenesis in response to HBO treatment. These proteins were CDCP1, Metallothionein, Kallikrein (KLK) 1 and KLK7 and early growth response 1. While the protein expression within the HSE models exposed to HBO treatment were not consistent in all HSEs derived from all skin donors, this is the first study to detect and compare both KLK1 and CDCP1 protein expression in both a HSE model and native human skin. Furthermore, this is the first study to provide such an in depth analysis of the effect of HBO treatment on a HSE model. The data presented in this thesis, demonstrates high levels of variation between individuals and their response to HBO treatment, consistent with the clinical variation that is currently observed.
Resumo:
Background and purpose: The purpose of the work presented in this paper was to determine whether patient positioning and delivery errors could be detected using electronic portal images of intensity modulated radiotherapy (IMRT). Patients and methods: We carried out a series of controlled experiments delivering an IMRT beam to a humanoid phantom using both the dynamic and multiple static field method of delivery. The beams were imaged, the images calibrated to remove the IMRT fluence variation and then compared with calibrated images of the reference beams without any delivery or position errors. The first set of experiments involved translating the position of the phantom both laterally and in a superior/inferior direction a distance of 1, 2, 5 and 10 mm. The phantom was also rotated 1 and 28. For the second set of measurements the phantom position was kept fixed and delivery errors were introduced to the beam. The delivery errors took the form of leaf position and segment intensity errors. Results: The method was able to detect shifts in the phantom position of 1 mm, leaf position errors of 2 mm, and dosimetry errors of 10% on a single segment of a 15 segment IMRT step and shoot delivery (significantly less than 1% of the total dose). Conclusions: The results of this work have shown that the method of imaging the IMRT beam and calibrating the images to remove the intensity modulations could be a useful tool in verifying both the patient position and the delivery of the beam.
Resumo:
The presence of insect pests in grain storages throughout the supply chain is a significant problem for farmers, grain handlers, and distributors world-wide. Insect monitoring and sampling programmes are used in the stored grains industry for the detection and estimation of pest populations. At the low pest densities dictated by economic and commercial requirements, the accuracy of both detection and abundance estimates can be influenced by variations in the spatial structure of pest populations over short distances. Geostatistical analysis of Rhyzopertha dominica populations in 2 and 3 dimensions showed that insect numbers were positively correlated over short (0.5 cm) distances, and negatively correlated over longer (.10 cm) distances. At 35 C, insects were located significantly further from the grain surface than at 25 and 30 C. Dispersion metrics showed statistically significant aggregation in all cases. The observed heterogeneous spatial distribution of R. dominica may also be influenced by factors such as the site of initial infestation and disturbance during handling. To account for these additional factors, I significantly extended a simulation model that incorporates both pest growth and movement through a typical stored-grain supply chain. By incorporating the effects of abundance, initial infestation site, grain handling, and treatment on pest spatial distribution, I developed a supply chain model incorporating estimates of pest spatial distribution. This was used to examine several scenarios representative of grain movement through a supply chain, and determine the influence of infestation location and grain disturbance on the sampling intensity required to detect pest infestations at various infestation rates. This study has investigated the effects of temperature, infestation point, and grain handling on the spatial distribution and detection of R. dominica. The proportion of grain infested was found to be dependent upon abundance, initial pest location, and grain handling. Simulation modelling indicated that accounting for these factors when developing sampling strategies for stored grain has the potential to significantly reduce sampling costs while simultaneously improving detection rate, resulting in reduced storage and pest management cost while improving grain quality.
Resumo:
This thesis was a step forward in improving the stability of power systems by applying new control and modelling techniques. The developed methods use the data obtained from voltage angle measurement devices which are synchronized with GPS signals to stabilize the system and avoid system-wide blackouts in the event of severe faults. New approaches were developed in this research for identifying and estimating reduced dynamic system models using phasor measurement units. The main goal of this research is achieved by integrating the developed methods to obtain a feasible wide-area control system for stabilizing the power systems.
Resumo:
We have taken a new method of calibrating portal images of IMRT beams and used this to measure patient set-up accuracy and delivery errors, such as leaf errors and segment intensity errors during treatment. A calibration technique was used to remove the intensity modulations from the images leaving equivalent open field images that show patient anatomy that can be used for verification of the patient position. The images of the treatment beam can also be used to verify the delivery of the beam in terms of multileaf collimator leaf position and dosimetric errors. A series of controlled experiments delivering an IMRT anterior beam to the head and neck of a humanoid phantom were undertaken. A 2mm translation in the position of the phantom could be detected. With intentional introduction of delivery errors into the beam this method allowed us to detect leaf positioning errors of 2mm and variation in monitor units of 1%. The method was then applied to the case of a patient who received IMRT treatment to the larynx and cervical nodes. The anterior IMRT beam was imaged during four fractions and the images calibrated and investigated for the characteristic signs of patient position error and delivery error that were shown in the control experiments. No significant errors were seen. The method of imaging the IMRT beam and calibrating the images to remove the intensity modulations can be a useful tool in verifying both the patient position and the delivery of the beam.
Resumo:
STUDY DESIGN: Reliability and case-control injury study. OBJECTIVES: 1) To determine if a novel device, designed to measure eccentric knee flexors strength via the Nordic hamstring exercise (NHE), displays acceptable test-retest reliability; 2) to determine normative values for eccentric knee flexors strength derived from the device in individuals without a history of hamstring strain injury (HSI) and; 3) to determine if the device could detect weakness in elite athletes with a previous history of unilateral HSI. BACKGROUND: HSIs and reinjuries are the most common cause of lost playing time in a number of sports. Eccentric knee flexors weakness is a major modifiable risk factor for future HSIs, however there is a lack of easily accessible equipment to assess this strength quality. METHODS: Thirty recreationally active males without a history of HSI completed NHEs on the device on 2 separate occasions. Intraclass correlation coefficients (ICCs), typical error (TE), typical error as a co-efficient of variation (%TE), and minimum detectable change at a 95% confidence interval (MDC95) were calculated. Normative strength data were determined using the most reliable measurement. An additional 20 elite athletes with a unilateral history of HSI within the previous 12 months performed NHEs on the device to determine if residual eccentric muscle weakness existed in the previously injured limb. RESULTS: The device displayed high to moderate reliability (ICC = 0.83 to 0.90; TE = 21.7 N to 27.5 N; %TE = 5.8 to 8.5; MDC95 = 76.2 to 60.1 N). Mean±SD normative eccentric flexors strength, based on the uninjured group, was 344.7 ± 61.1 N for the left and 361.2 ± 65.1 N for the right side. The previously injured limbs were 15% weaker than the contralateral uninjured limbs (mean difference = 50.3 N; 95% CI = 25.7 to 74.9N; P < .01), 15% weaker than the normative left limb data (mean difference = 50.0 N; 95% CI = 1.4 to 98.5 N; P = .04) and 18% weaker than the normative right limb data (mean difference = 66.5 N; 95% CI = 18.0 to 115.1 N; P < .01). CONCLUSIONS: The experimental device offers a reliable method to determine eccentric knee flexors strength and strength asymmetry and revealed residual weakness in previously injured elite athletes.
Resumo:
Depression in childhood or adolescence is associated with increased rates of depression in adulthood. Does this justify efforts to detect (and treat) those with symptoms of depression in early childhood or adolescence? The aim of this study was to determine how well symptoms of anxiety/depression (A-D) in early childhood and adolescence predict adult mental health. The study sample is taken from a population-based prospective birth cohort study. Of the 8556 mothers initially approached to participate 8458 agreed, of whom 7223 mothers gave birth to a live singleton baby. Children were screened using modified Child Behaviour Checklist (CBCL) scales for internalizing and total problems (T-P) at age 5 and the CBCL and Youth Self Report (YSR) A-D subscale and T-P scale at age 14. At age 21, a sub-sample of 2563 young adults in this cohort were administered the CIDI-Auto. Results indicated that screening at age 5 would detect few later cases of significant mental ill-health. Using a cut-point of 20% for internalizing at child age 5 years the CBCL had sensitivities of only 25% and 18% for major depression and anxiety disorders at 21 years, respectively. At age 14, the YSR generally performed a little better than the CBCL as a screening instrument, but neither performed at a satisfactory level. Of the children who were categorised as having YSR A-D at 14 years 30% and 37% met DSM-IV criteria for major depression and anxiety disorders, respectively, at age 21. Our findings challenge an existing movement encouraging the detection and treatment of those with symptoms of mental illness in early childhood.
Resumo:
Matrix metalloproteinases (MMPs) are proteolytic enzymes important to wound healing. In non-healing wounds, it has been suggested that MMP levels become dysfunctional, hence it is of great interest to develop sensors to detect MMP biomarkers. This study presents the development of a label-free optical MMP biosensor based on a functionalised porous silicon (pSi) thin film. The biosensor is fabricated by immobilising a peptidomimetic MMP inhibitor in the porous layer using hydrosilylation followed by amide coupling. The binding of MMP to the immobilised inhibitor translates into a change of effective optical thickness (EOT) over the time. We investigate the effect of surface functionalisation on the stability of pSi surface and evaluate the sensing performance. We successfully demonstrate MMP detection in buffer solution and human wound fluid at physiologically relevant concentrations. This biosensor may find application as a point-of-care device that is prognostic of the healing trajectory of chronic wounds.