902 resultados para Fat and protein deposition
Resumo:
To assess the associations between obesity markers (BMI, waist circumference and %body fat) and inflammatory markers (interleukin-1β (IL-1β); interleukin-6 (IL-6); tumor necrosis factor-α (TNF-α) and high-sensitivity C-reactive protein (hs-CRP)).
Resumo:
Vitamin E deficiency increases expression of the CD36 scavenger receptor, suggesting specific molecular mechanisms and signaling pathways modulated by alpha-tocopherol. We show here that alpha-tocopherol down-regulated CD36 expression (mRNA and protein) in oxidized low density lipoprotein (oxLDL)-stimulated THP-1 monocytes, but not in unstimulated cells. Furthermore, alpha-tocopherol treatment of monocytes led to reduction of fluorescent oxLDL-3,3'-dioctadecyloxacarbocyanine perchlorate binding and uptake. Protein kinase C (PKC) appears not to be involved because neither activation of PKC by phorbol 12-myristate 13-acetate nor inhibition by PKC412 was affected by alpha-tocopherol. However, alpha-tocopherol could partially prevent CD36 induction after stimulation with a specific agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma; troglitazone), indicating that this pathway is susceptible to alpha-tocopherol action. Phosphorylation of protein kinase B (PKB) at Ser473 was increased by oxLDL, and alpha-tocopherol could prevent this event. Expression of PKB stimulated the CD36 promoter as well as a PPARgamma element-driven reporter gene, whereas an inactive PKB mutant had no effect. Moreover, coexpression of PPARgamma and PKB led to additive induction of CD36 expression. Altogether, our results support the existence of PKB/PPARgamma signaling pathways that mediate CD36 expression in response to oxLDL. The activation of CD36 expression by PKB suggests that both lipid biosynthesis and fatty acid uptake are stimulated by PKB.
Resumo:
PURPOSE: To evaluate the expression and presence of surfactant protein (SP) A and SP-D in the lacrimal apparatus, at the ocular surface, and in tears in healthy and pathologic states. METHODS: Expression of mRNA for SP-A and SP-D was analyzed by RT-PCR in healthy lacrimal gland, conjunctiva, cornea, and nasolacrimal ducts as well as in a spontaneously immortalized conjunctival epithelial cell line (HCjE; IOBA-NHC) and a SV40-transfected cornea epithelial cell line (HCE). Deposition of SP-A and SP-D was determined by Western blot, dot blot, and immunohistochemistry in healthy tissues, in tears, aqueous humor, and in sections of different corneal abnormalities (keratoconus, herpetic keratitis, and Staphylococcus aureus-based ulceration). Cell lines were stimulated with different cytokines and bacterial components and were analyzed for the production of SP-A and SP-D by immunohistochemistry. RESULTS: The presence of SP-A and SP-D on mRNA and protein levels was evidenced in healthy lacrimal gland, conjunctiva, cornea, and nasolacrimal duct samples. Moreover, both proteins were present in tears but were absent in aqueous humor. Immunohistochemistry revealed the production of both peptides by acinar epithelial cells of the lacrimal gland and epithelial cells of the conjunctiva and nasolacrimal ducts, whereas goblet cells revealed no reactivity. Healthy cornea revealed weak reactivity on epithelial surface cells only. In contrast, SP-A and SP-D revealed strong reactivity in patients with herpetic keratitis and corneal ulceration surrounding lesions and in several immigrated defense cells. Reactivity in corneal epithelium and endothelium was also seen in patients with keratoconus. Cell culture experiments revealed that SP-A and SP-D are produced by both epithelial cell lines without and after stimulation with cytokines and bacterial components. CONCLUSIONS: These results show that SP-A, in addition to SP-D, is a peptide of the tear film. Based on the known direct and indirect antimicrobial effects of collectins, the surfactant-associated proteins A and D seem to be involved in several ocular surface diseases.
Resumo:
Gamma-tocopherol (gammaT) complements alpha-tocopherol (alphaT) by trapping reactive nitrogen oxides to form a stable adduct, 5-nitro-gammaT [Christen et al., PNAS 94:3217-3222; 1997]. This observation led to the current investigation in which we studied the effects of gammaT supplementation on plasma and tissue vitamin C, vitamin E, and protein nitration before and after zymosan-induced acute peritonitis. Male Fischer 344 rats were fed for 4 weeks with either a normal chow diet with basal 32 mg alphaT/kg, or the same diet supplemented with approximately 90 mg d-gammaT/kg. Supplementation resulted in significantly higher levels of gammaT in plasma, liver, and kidney of control animals without affecting alphaT, total alphaT+gammaT or vitamin C. Intraperitoneal injection of zymosan caused a marked increase in 3-nitrotyrosine and a profound decline in vitamin C in all tissues examined. Supplementation with gammaT significantly inhibited protein nitration and ascorbate oxidation in the kidney, as indicated by the 29% and 56% reduction of kidney 3-nitrotyrosine and dehydroascorbate, respectively. Supplementation significantly attenuated inflammation-induced loss of vitamin C in the plasma (38%) and kidney (20%). Zymosan-treated animals had significantly higher plasma and tissue gammaT than nontreated pair-fed controls, and the elevation of gammaT was strongly accentuated by the supplementation. In contrast, alphaT did not significantly change in response to zymosan treatment. In untreated control animals, gammaT supplementation lowered basal levels of 3-nitrotyrosine in the kidney and buffered the starvation-induced changes in vitamin C in all tissues examined. Our study provides the first in vivo evidence that in rats with high basal amounts of alphaT, a moderate gammaT supplementation attenuates inflammation-mediated damage, and spares vitamin C during starvation-induced stress without affecting alphaT.
Resumo:
STUDY DESIGN: In vitro testing of vertebroplasty techniques including pulsed jet-lavage for fat and marrow removal in human cadaveric lumbar and thoracic vertebrae. OBJECTIVE: To develop jet-lavage techniques for vertebroplasty and investigate their effect on cement distribution, injection forces, and fat embolism. SUMMARY OF BACKGROUND DATA: The main complications of cement vertebroplasty are cement leakage and pulmonary fat embolism, which can have fatal consequences and are difficult to prevent reliably by current vertebroplasty techniques. METHODS: Twenty-four vertebrae (Th8-L04) from 5 osteoporotic cadaver spines were grouped in triplets depending on bone mineral density (BMD). Before polymethylmethacrylate (PMMA) vertebroplasty, a pulsatile jet-lavage for removal of intertrabecular fat and bone marrow was performed in 2 groups with 8 specimens each, performing radial and axial irrigation from the biopsy needles. One hundred mL of Ringer solution were injected through 1 pedicle and regained by low vacuum via the contralateral pedicle. Eight control vertebrae were not irrigated. All specimens underwent standardized PMMA cement augmentation injecting 20% of the vertebral volume. Injection forces, cement distribution, and extravasations were quantified. RESULTS: All irrigation solution could be retrieved with the vacuum applied. A Kruskal-Wallis test revealed significantly higher injection forces of the control group as compared with the irrigated groups (P = 0.021). Dilatation of the syringe at forces above 300 N occurred in 75% of the untreated compared with 12.5% of the lavaged specimens. CT distribution analysis showed more homogenous cement distribution of the cement and significantly less extravasation in the irrigated specimens. CONCLUSION: The developed lavage technique for vertebroplasty showed to be feasible and reproducible. The reduction of injection forces would allow the use of more viscous PMMA cement lowering the risk for cement embolization and results in a safer procedure. The wash-out of bone marrow and the possible reduction of pulmonary fat embolism have to be verified with in vivo models.
Resumo:
This technical report discusses the application of the Lattice Boltzmann Method (LBM) and Cellular Automata (CA) simulation in fluid flow and particle deposition. The current work focuses on incompressible flow simulation passing cylinders, in which we incorporate the LBM D2Q9 and CA techniques to simulate the fluid flow and particle loading respectively. For the LBM part, the theories of boundary conditions are studied and verified using the Poiseuille flow test. For the CA part, several models regarding simulation of particles are explained. And a new Digital Differential Analyzer (DDA) algorithm is introduced to simulate particle motion in the Boolean model. The numerical results are compared with a previous probability velocity model by Masselot [Masselot 2000], which shows a satisfactory result.
Resumo:
To investigate mechanisms by which angiotensin converting enzyme (ACE)-inhibition increases insulin sensitivity, spontaneously hypertensive (SH) rats were treated with or without ramipril (1 mg/kg per day) for 12 weeks. Insulin binding and protein levels of insulin receptor substrate-1 (IRS-1), p85-subunit of phosphatidylinositol 3'-kinase (p85) and Src homology 2 domain-containing phosphatase-2 (SHP2) were then determined in hindlimb muscle and liver. Additionally, protein tyrosine phosphatase (PTPase) activities towards immobilized phosphorylated insulin receptor or phosphorylated IRS-1 of membrane (MF) and cytosolic fractions (CF) of these tissues were measured. Ramipril treatment increased IRS-1-protein content in muscle by 31+/-9% (P<0.05). No effects were observed on IRS-1 content in liver or on insulin binding or protein expression of p85 or SHP2 in both tissues. Ramipril treatment also increased dephosphorylation of insulin receptor by muscle CF (22.0+/-1.0%/60 min compared to 16.8+/-1.5%/60 min; P<0.05), and of IRS-1 by liver MF (37.2+/-1.7%/7.5 min compared to 33.8+/-1.7%/7.5 min; P<0.05) and CF (36.8+/-1.0%/7.5 min compared to 33.2+/-1.0%/7.5 min; P<0.05). We conclude that the observed effects of ACE-inhibition by ramipril on the protein expression of IRS-1 and on PTPase activity might contribute to its effect on insulin sensitivity.
Resumo:
AIMS/HYPOTHESIS: Inhibition of the signalling function of the human insulin receptor (HIR) is one of the principle mechanisms which induce cellular insulin resistance. It is speculated that serine residues in the insulin receptor beta-subunit are involved in receptor inhibition either as inhibitory phosphorylation sites or as part of receptor domains which bind inhibitory proteins or tyrosine phosphatases. As reported earlier we prepared 16 serine to alanine point mutations of the HIR and found that serine to alanine mutants HIR-994 and HIR-1023/25 showed increased tyrosine autophosphorylation when expressed in human embryonic kidney (HEK) 293 cells. In this study we examined whether these mutant receptors have a different susceptibility to inhibition by serine kinases or an altered tyrosine kinase activity. METHODS: Tyrosine kinase assay and transfection studies. RESULTS: In an in vitro kinase assay using IRS-1 as a substrate we could detect a higher intrinsic tyrosine kinase activity of both receptor constructs. Additionally, a higher capacity to phosphorylate the adapter protein Shc in intact cells was seen. To test the inhibition by serine kinases, the receptor constructs were expressed in HEK 293 cells together with IRS-1 and protein kinase C isoforms beta2 and theta. Phorbol ester stimulation of these cells reduced wild-type receptor autophosphorylation to 58 % or 55 % of the insulin simulated state, respectively. This inhibitory effect was not observed with HIR-994 and HIR-1023/25, although all other tested HIR mutants showed similar inhibition induced by protein kinase C. CONCLUSION/INTERPRETATION: The data suggest that the HIR-domain which contains the serine residues 994 and 1023/25 is important for the inhibitory effect of protein kinase C isoforms beta2 and theta on insulin receptor autophosphorylation.
Resumo:
To address food safety concerns of the public regarding the potential transfer of recombinant DNA (cry1Ab) and protein (Cry1Ab) into the milk of cows fed genetically modified maize (MON810), a highly specific and sensitive quantitative real-time PCR (qPCR) and an ELISA were developed for monitoring suspicious presence of novel DNA and Cry1Ab protein in bovine milk. The developed assays were validated according to the assay validation criteria specified in the European Commission Decision 2002/657/EC. The detection limit and detection capability of the qPCR and ELISA were 100 copies of cry1Ab microL(-1) milk and 0.4 ng mL(-1) Cry1Ab, respectively. Recovery rates of 84.9% (DNA) and 97% (protein) and low (<15%) imprecision revealed the reliable and accurate estimations. A specific qPCR amplification and use of a specific antibody in ELISA ascertained the high specificity of the assays. Using these assays for 90 milk samples collected from cows fed either transgenic (n = 8) or non-transgenic (n = 7) rations for 6 months, neither cry1Ab nor Cry1Ab protein were detected in any analyzed sample at the assay detection limits.
Resumo:
The availability of recombinant human growth hormone (GH) has resulted in investigation of the role of GH in adulthood and the effects of GH replacement in the GH-deficient adult. These studies have led to the recognition of a specific syndrome of GH-deficiency, characterized by symptoms, signs and investigative findings. Adults with long-standing growth hormone deficiency are often overweight, have altered body composition, with reduced lean body mass (LBM), increased fat mass (FM), reduced total body water and reduced bone mass. In addition, there is reduced physical and cardiac performance, altered substrate metabolism and an abnormal lipid profile predisposing to the development of cardiovascular disease. Adults with GH deficiency report reduced psychological well-being and quality of life. These changes may contribute to the morbidity and premature mortality observed in hypopituitary adults on conventional replacement therapy. GH treatment restores LBM, reduces FM, increases total body water and increases bone mass. Following GH therapy, increases are recorded in exercise capacity and protein synthesis, and "favourable" alterations occur in plasma lipids. In addition, psychological well-being and quality of life improve with replacement therapy. GH is well tolerated; adverse effects are largely related to fluid retention and respond to dose adjustment. It is likely that GH replacement will become standard therapy for the hypopituitary adult in the near future. The benefits of GH replacement in the GH-deficient adult have been unequivocally demonstrated in studies lasting up to 3 years. The results of longer term studies are awaited to determine whether these benefits are sustained over a lifetime.
Resumo:
Kidney transplant patients display decreased muscle mass and increased fat mass. Whether this altered body composition is due to glucocorticoid induced altered fuel metabolism is unclear. To answer this question, 16 kidney transplant patients were examined immediately after kidney transplantation (12 +/- 4 days, mean +/- SEM) and then during months 2, 5, 11 and 16, respectively, by whole body dual energy X-ray absorptiometry (Hologic QDR 1000W) and indirect calorimetry. Results were compared with those of 16 age, sex and body mass index matched healthy volunteers examined only once. All patients received dietary counselling with a step 1 diet of the American Heart Association and were advised to restrict their caloric intake to the resting energy expenditure plus 30%. Immediately after transplantation, lean mass of the trunk was higher by 7 +/- 1% (P < 0.05) and that of the limbs was lower by more than 10% (P < 0.01) in patients than in controls. In contrast, no difference in fat mass and resting energy expenditure could be detected between patients and controls. During the 16 months of observation, total fat mass increased in male (+4.9 +/- 1.5 kg), but not in female patients (0.1 +/- 0.8 kg). The change in fat mass observed in men was due to an increase in all subregions of the body analysed (trunk, arms+legs as well as head+neck), whereas in women only an increase in head+neck by 9 +/- 2% (P = 0.05) was detected. Body fat distribution remained unchanged in both sexes over the 16 months of observation. Lean mass of the trunk mainly decreased between days 11 and 42 (P < 0.01) and remained stable thereafter. After day 42, lean mass of arms and legs (mostly striated muscle) and head+neck progressively increased over the 14 months of observation by 1.6 +/- 0.6 kg (P < 0.05) and 0.4 +/- 0.1 kg (P < 0.01), respectively. Resting energy expenditure was similar in controls and patients at 42 days (30.0 +/- 0.7 vs. 31.0 +/- 0.9 kcal kg-1 lean mass) and did not change during the following 15 months of observation. However, composition of fuel used to sustain resting energy expenditure in the fasting state was altered in patients when compared with normal subjects, i.e. glucose oxidation was higher by more than 45% in patients (P < 0.01) during the second month after grafting, but gradually declined (P < 0.01) over the following 15 months to values similar to those observed in controls. Protein oxidation was elevated in renal transplant patients on prednisone at first measurement, a difference which tended to decline over the study period. In contrast to glucose and protein oxidation, fat oxidation was lower in patients 42 days after grafting (P < 0.01), but increased by more than 100% reaching values similar to those observed in controls after 16 months of study. Mean daily dose of prednisone per kg body weight correlated with the three components of fuel oxidation (r > 0.93, P < 0.01), i.e. protein, glucose and fat oxidation. These results indicate that in prednisone treated renal transplant patients fuel metabolism is regulated in a dose-dependent manner. Moreover, dietary measures, such as caloric and fat intake restriction as well as increase of protein intake, can prevent muscle wasting as well as part of the usually observed fat accumulation. Furthermore, the concept of preferential upper body fat accumulation as consequence of prednisone therapy in renal transplant patients has to be revised.
Resumo:
Two experiments were conducted to evaluate the effects of body condition scores of beef calves on performance efficiency and carcass characteristics. In Experiment 1, 111 steer calves were stratified by breed and condition score (CS) and randomly allotted to 14 pens. The study was analyzed as a 2 x 3 factorial design, with two breeds (Angus and Simmental) and three initial CS (4.4, 5.1, and 5.6). In Experiment 2, 76 steer calves were allotted to six pens by CS. The resultant pens averaged 3.9, 4.5, 4.7, 5.0, 5.1, and 5.6 in CS. Calves in both studies were fed a corn-based finishing diet formulated to 13.5% crude protein. All calves were implanted with Synovex- SÒ initially and reimplanted with Revalor-SÒ. In Experiment 1, 29-day dry matter intake (lb/day) increased with CS (17.9, 18.1, and 19.1 for 4.4, 5.1, and 5.6, respectively; p < .04). Daily gain (29 days) tended to decrease with increasing CS (4.19, 3.71, and 3.26; p < .13). Days on feed decreased with increasing CS (185, 180, and 178d; p < .07). In Experiment 2, daily gains also increased with decreasing initial CS for the first 114 days (p < .05) and tended to increase overall (p < .20). In Experiment 1, calves with lower initial CS had less external fat at slaughter (.48, .53, and .61 in. for CS 4.4, 5.1, and 5.6, respectively; p < .05). This effect was also noted at slaughter (p < .10), as well as at 57 days (p < .06) and at 148 days (p < .06) as measured by real-time ultrasound. Measurements of intramuscular fat and marbling were not different in either study. These data suggest that CS of feeder calves may be a useful tool for adjusting energy requirements of calves based on body condition. Also, feeder cattle may be sorted into outcome or management groups earlier than currently practiced using body condition and/or real-time ultrasound.
Resumo:
An in situ study was conducted to evaluate the effects of heat treatments on the degradation kinetics and escape protein concentrations of forages (alfalfa and berseem clover). Alfalfa collected at 4 and 7 weeks post-harvest and berseem clover collected at 5 and 7 weeks postharvest were freeze-dried and then heated to 100, 125, and 150o C for 2 hours. Heat treatment effects were determined by placing two bags of sample (for each treatment, maturity, and forage species for a given incubation times) into the rumen of one fistulated steer fed alfalfa hay. Bags were incubated for periods of 0 to 48 hours. Increasing levels of heat treatments of forages increased concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent insoluble nitrogen (ADIN) and non-degradable protein (NDP), potentially degradable protein proportion (PDP), and protein escaping rumen degradation (PEP) while decreasing water soluble protein (WSP) and the rates of crude protein (CP), except immature berseem clover and cell wall (CW) degradation. PEP was greater and rate of CP degradation was lower at 100 and 150o C compared to 125o C in immature berseem clover.
Resumo:
Background Besides α1,3 galactosyltransferase (Gal) gene knockout several transgene combinations to prevent pig-to-human xenograft rejection are being investigated. hCD46/HLA-E double transgenic pigs were tested for prevention of xenograft rejection in an ex vivo pig-to-human xenoperfusion model. In addition, expression of human thrombomodulin (hTM-) on wild-type and/or multi-transgenic (GalTKO/hCD46) background was evaluated to overcome pig-to-human coagulation incompatibility. Methods hCD46/HLA-E double transgenic as well as wild-type pig forelimbs were ex vivo perfused with whole, heparinized human blood and autologous blood, respectively. Blood samples were analyzed for production of porcine and/or human inflammatory cytokines. Biopsy samples were examined for deposition of complement proteins as well as E-selectin and VCAM-1 expression. Serial blood cell counts were performed to analyze changes in human blood cell populations. In vitro, PAEC were analyzed for ASGR1 mediated human platelet phagocytosis. In addition, a biochemical assay was performed using hTM-only and multi-transgenic (GalTKO/hCD46/hTM) pig aortic endothelial cells (PAEC) to evaluate the ability of hTM to generate activated protein C (APC). Subsequently, the anti-coagulant properties of hTM were tested in a microcarrier based coagulation assay with PAEC and human whole blood. Results No hyperacute rejection was seen in the ex vivo perfusion model. Extremity perfusions lasted for up to 12 h without increase of vascular resistance and had to be terminated due to continuous small blood losses. Plasma levels of porcine IL1β (P < 0.0001), and IL-8 (P = 0.019) as well as human C3a, C5a and soluble C5b-9 were significantly (P < 0.05–<0.0001) lower in blood perfused through hCD46/HLA-E transgenic as compared to wild-type limbs. C3b/c, C4b/c, and C6 deposition as well as E-selectin and VCAM-1 expression were significantly (P < 0.0001) higher in tissue of wild-type as compared to transgenic limbs. Preliminary immunofluorescence staining results showed that the expression of hCD46/HLA-E is associated with a reduction of NK cell tissue infiltration (P < 0.05). A rapid decrease of platelets was observed in all xenoperfusions. In vitro findings showed that PAEC express ASGR1 and suggest that this molecule is involved in human platelet phagocytosis. In vitro, we found that the amount of APC in the supernatant of hTM transgenic cells increased significantly (P < 0.0001) with protein C concentration in a dose-dependent manner as compared to control PAEC lacking hTM, where the turnover of the protein C remained at the basal level for all of the examined concentration. In further experiments, hTM also showed the ability to prevent blood coagulation by three- to four-fold increased (P < 0.001) clotting time as compared to wild-type PAEC. The formation of TAT complexes was significantly lower when hTM-transgenic cells (P < 0.0001) were used as compared to wild-type cells. Conclusions Transgenic hCD46/HLA-E expression clearly reduced humoral xenoresponses since the terminal pathway of complement, endothelial cell activation, inflammatory cytokine production and NK-cell tissue infiltration were all down-regulated. We also found ASGR1 expression on the vascular endothelium of pigs, and this molecule may thus be involved in binding and phagocytosis of human platelets during pig-to-human xenotransplantation. In addition, use of the hTM transgene has the potential to overcome coagulation incompatibilities in pig-to-human xenotransplantation.
Resumo:
We investigated the consequences of early malnutrition on milk production by dams and on body weight and structural lung growth of young rats using two models of protein restriction. Dams of the early restriction group were fed an 8% casein diet starting at parturition. Those of the delayed restriction group received a 12% casein diet from lactation d 8-14 and thereafter the 8% diet. After weaning, early restriction and delayed restriction group rats were maintained on low protein until d 49, then refed the control diet (18% casein) up to d 126. Milk was analyzed on d 12. Animals were killed at d 21, 49, and 126 for lung fixation in situ. In this report, we show that protein restriction lowered milk yield to 38% of normal. Milk lipid per gram of dry weight tended to be increased, whereas lactose and protein were significantly decreased. Pups from protein-restricted dams grew less and had lower lung volumes, effects being more serious at d 49. However, specific lung volumes (in milliliters per 100 g body weight) were constantly increased. This means that lung was either less affected than body mass or overdistended due to less connective tissue. After refeeding, both groups showed a remarkable catch-up in growth with restoration of the normal allometric relationship between lung volume and body weight. Thus, even after an early onset of protein restriction to total body, the lung is still capable to substantially recover from growth retardation.