930 resultados para Factor-like Domain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much debate in schizotypal research has centred on the factor structure of the Schizotypal Personality Questionnaire (SPQ), with research variously showing higher-order dimensionality consisting of two to seven dimensions. In addition, cross-cultural support for the stability of those factors remains limited. Here, we examined the factor structure of the SPQ among British and Trinidadian adults. Participants from a White British sub-sample (n = 351) resident in the UK and from an African Caribbean sub-sample (n = 284) resident in Trinidad completed the SPQ. The higher-order factor structure of the SPQ was analysed through confirmatory factor analysis, followed by multiple-group analysis for the model of best-fit. Between-group differences for sex and ethnicity were investigated using multivariate analysis of variance in relation to the higher-order domains. The model of best-fit was the four-factor structure, which demonstrated measurement invariance across groups. Additionally, these data had an adequate fit for two alternative models: a) 3 factors and b) a modified 4-factor. The British sub-sample had significantly higher scores across all domains than the Trinidadian group, and men scored significantly higher on the disorganised domain than women. The four-factor structure received confirmatory support and, importantly, support for use with populations varying in ethnicity and culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Tumor necrosis factor alpha (TNFα) antagonists are effective in treating several immune-inflammatory diseases, including psoriasis and inflammatory bowel disease. The paradoxical and unpredictable induction of psoriasis and psoriasiform skin lesions is a recognized adverse event, although of unclear aetiology. However, histological analysis of these eruptions remains insufficient, yet suggesting that some might constitute a new pattern of adverse drug reaction, rather than true psoriasis. Case report: The authors report the case of a 43-year-old woman with severe recalcitrant Crohn disease who started treatment with infliximab. There was also a personal history of mild plaque psoriasis without clinical expression for the past eight years. She developed a heterogeneous cutaneous eruption of psoriasiform morphology with pustules and crusts after the third infliximab infusion. The histopathological diagnosis was of a Sweet-like dermatosis. The patient was successfully treated with cyclosporine in association with both topical corticosteroid and vitamin D3 analogue. Three weeks after switching to adalimumab a new psoriasiform eruption was observed, histologically compatible with a psoriasiform drug eruption. Despite this, and considering the beneficial effect on the inflammatory bowel disease, it was decided to maintain treatment with adalimumab and to treat through with topicals, with progressive control of skin disease. Discussion: Not much is known about the pathogenesis of psoriasiform eruptions induced by biological therapies, but genetic predisposition and Koebner phenomenon may contribute to it. Histopathology can add new facets to the comprehension of psoriasiform reactions. In fact, histopathologic patterns of such skin lesions appear to be varied, in a clear asymmetry with clinical findings. Conclusion: The sequential identification in the same patient of two clinical and histopathologic patterns of drug reaction to TNFα antagonists is rare. Additionally, to the authors’ knowledge, there is only one other description in literature of a TNFα antagonist-induced Sweet-like dermatosis, emphasizing the singularity of this case report.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Amplification and overexpression of the epidermal growth factor receptor (EGFR) gene are a hallmark of primary glioblastoma (45%), making it a prime target for therapy. In addition, these amplifications are frequently associated with oncogenic mutations in the extracellular domain. However, efforts at targeting the EGFR tyrosine kinase using small molecule inhibitors or antibodies have shown disappointing efficacy in clinical trials for newly diagnosed or recurrent glioblastoma. Here, we review recent insights into molecular mechanisms relevant for effective targeting of the EGFR pathway. RECENT FINDINGS: Molecular workup of glioblastoma tissue of patients under treatment with small molecule inhibitors has established drug concentrations in the tumor tissue, and has shed light on the effectiveness of target inhibition and respective effects on pathway signaling. Further, functional analyses of interaction of small molecule inhibitors with distinct properties to bind to the active or inactive form of EGFR have provided new insights that will impact the choice of drugs. Finally, vaccination approaches targeting the EGFRvIII mutant featuring a tumor-specific antigen have shown promising results that warrant larger controlled clinical trials. SUMMARY: A combination of preclinical and clinical studies at the molecular level has provided new insights that will allow refining strategies for targeting the EGFR pathway in glioblastoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal models of infective endocarditis (IE) induced by high-grade bacteremia revealed the pathogenic roles of Staphylococcus aureus surface adhesins and platelet aggregation in the infection process. In humans, however, S. aureus IE possibly occurs through repeated bouts of low-grade bacteremia from a colonized site or intravenous device. Here we used a rat model of IE induced by continuous low-grade bacteremia to explore further the contributions of S. aureus virulence factors to the initiation of IE. Rats with aortic vegetations were inoculated by continuous intravenous infusion (0.0017 ml/min over 10 h) with 10(6) CFU of Lactococcus lactis pIL253 or a recombinant L. lactis strain expressing an individual S. aureus surface protein (ClfA, FnbpA, BCD, or SdrE) conferring a particular adhesive or platelet aggregation property. Vegetation infection was assessed 24 h later. Plasma was collected at 0, 2, and 6 h postinoculation to quantify the expression of tumor necrosis factor (TNF), interleukin 1α (IL-1α), IL-1β, IL-6, and IL-10. The percentage of vegetation infection relative to that with strain pIL253 (11%) increased when binding to fibrinogen was conferred on L. lactis (ClfA strain) (52%; P = 0.007) and increased further with adhesion to fibronectin (FnbpA strain) (75%; P < 0.001). Expression of fibronectin binding alone was not sufficient to induce IE (BCD strain) (10% of infection). Platelet aggregation increased the risk of vegetation infection (SdrE strain) (30%). Conferring adhesion to fibrinogen and fibronectin favored IL-1β and IL-6 production. Our results, with a model of IE induced by low-grade bacteremia, resembling human disease, extend the essential role of fibrinogen binding in the initiation of S. aureus IE. Triggering of platelet aggregation or an inflammatory response may contribute to or promote the development of IE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of dendritic cells (DC) by microbial products via Toll-like receptors (TLR) is instrumental in the induction of immunity. In particular, TLR signaling plays a major role in the instruction of Th1 responses. The development of Th2 responses has been proposed to be independent of the adapter molecule myeloid differentiation factor 88 (MyD88) involved in signal transduction by TLRs. In this study we show that flagellin, the bacterial stimulus for TLR5, drives MyD88-dependent Th2-type immunity in mice. Flagellin promotes the secretion of IL-4 and IL-13 by Ag-specific CD4(+) T cells as well as IgG1 responses. The Th2-biased responses are associated with the maturation of DCs, which are shown to express TLR5. Flagellin-mediated DC activation requires MyD88 and induces NF-kappaB-dependent transcription and the production of low levels of proinflammatory cytokines. In addition, the flagellin-specific response is characterized by the lack of secretion of the Th1-promoting cytokine IL-12 p70. In conclusion, this study suggests that flagellin and, more generally, TLR ligands can control Th2 responses in a MyD88-dependent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The feline immunodeficiency virus (FIV) targets activated CD4-positive helper T cells preferentially, inducing an AIDS-like immunodeficiency in its natural host species, the domestic cat. The primary receptor for FIV is CD134, a member of the tumour necrosis factor receptor superfamily (TNFRSF) and all primary viral strains tested to date use CD134 for infection. To investigate the effect of the natural ligand for CD134 on FIV infection, feline CD134L was cloned and expressed in soluble forms. However, in contrast to murine or human CD134L, soluble feline CD134L (sCD134L) did not bind to CD134. Receptor-binding activity was restored by enforced covalent trimerisation following the introduction of a synthetic trimerisation domain from tenascin (TNC). Feline and human TNC-CD134Ls retained the species-specificity of the membrane-bound forms of the ligand while murine TNC-CD134L displayed promiscuous binding to feline, human or murine CD134. Feline and murine TNC-CD134Ls were antagonists of FIV infection; however, potency was both strain-specific and substrate-dependent, indicating that the modulatory effects of endogenous sCD134L, or exogenous CD134Lbased therapeutics, may vary depending on the viral strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SAMHD1 has recently been identified as an HIV-1 restriction factor operating in myeloid cells. As a countermeasure, the Vpx accessory protein from HIV-2 and certain lineages of SIV have evolved to antagonize SAMHD1 by inducing its ubiquitin-proteasome-dependent degradation. Here, we show that SAMHD1 experienced strong positive selection episodes during primate evolution that occurred in the Catarrhini ancestral branch prior to the separation between hominoids (gibbons and great apes) and Old World monkeys. The identification of SAMHD1 residues under positive selection led to mapping the Vpx-interaction domain of SAMHD1 to its C-terminal region. Importantly, we found that while SAMHD1 restriction activity toward HIV-1 is evolutionarily maintained, antagonism of SAMHD1 by Vpx is species-specific. The distinct evolutionary signature of SAMHD1 sheds light on the development of its antiviral specificity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotes contain inorganic polyphosphate (polyP) and acidocalcisomes, which sequester polyP and store amino acids and divalent cations. Why polyP is sequestered in dedicated organelles is not known. We show that polyP produced in the cytosol of yeast becomes toxic. Reconstitution of polyP translocation with purified vacuoles, the acidocalcisomes of yeast, shows that cytosolic polyP cannot be imported, whereas polyP produced by the vacuolar transporter chaperone (VTC) complex, an endogenous vacuolar polyP polymerase, is efficiently imported and does not interfere with growth. PolyP synthesis and import require an electrochemical gradient, probably as a driving force for polyP translocation. VTC exposes its catalytic domain to the cytosol and carries nine vacuolar transmembrane domains. Mutations in the VTC transmembrane regions, which are likely to constitute the translocation channel, block not only polyP translocation but also synthesis. Given that they are far from the cytosolic catalytic domain of VTC, this suggests that the VTC complex obligatorily couples synthesis of polyP to its import in order to avoid toxic intermediates in the cytosol. Sequestration of otherwise toxic polyP might be one reason for the existence of acidocalcisomes in eukaryotes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent literature evidences differential associations of personal and general just-world beliefs with constructs in the interpersonal domain. In line with this research, we examine the respective relationships of each just-world belief with the Five-Factor and the HEXACO models of personality in one representative sample of the working population of Switzerland and one sample of the general US population, respectively. One suppressor effect was observed in both samples: Neuroticism and emotionality was positively associated with general just-world belief, but only after controlling for personal just-world belief. In addition, agreeableness was positively and honesty-humility negatively associated with general just-world belief but unrelated to personal just-world belief. Conscientiousness was consistently unrelated to any of the just-world belief and extraversion and openness to experience revealed unstable coefficients across studies. We discuss these points in light of just-world theory and their implications for future research taking both dimensions into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TGA2 is a dual-function Systemic Acquired Resistance (SAR) transcription factor involved in the activation and repression of pathogenesis-related (PR) genes. Recent studies have shown that TGA2 is able to switch from a basal repressor to activator, likely, through regulatory control from its N-terminus. The N-terminus has also been shown to affect DNA binding of the TGA2 bZIP domain when phosphorylated by Casein Kinase II (CK2). The mechanisms involved for directing a switch from basal repressor to activator, and the role of kinase activity, have not previously been looked at in detail. This study provides evidence for the involvement of a CK2-like kinase in the switch of TGA2 activity from repressor to activator, by regulating the DNA-binding activity of TGA2 by phosphorylating residues in the N terminus of the protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During infection, the model plant Arabidopsis thaliana is capable of activating long lasting defence responses both in tissue directly affected by the pathogen and in more distal tissue. Systemic acquired resistance (SAR) is a type of systemic defence response deployed against biotrophic pathogens resulting in altered plant gene expression and production of antimicrobial compounds. One such gene involved in plant defence is called pathogenesis-related 1 (PR1) and is under the control of several protein regulators. TGA II-clade transcription factors (namely TGA2) repress PR1 activity prior to infection by forming large oligomeric complexes effectively blocking gene transcription. After pathogen detection, these complexes are dispersed by a mechanism unknown until now and free TGA molecules interact with the non-expressor of pathogenesis-related gene 1 (NPR1) protein forming an activating complex enabling PR1 transcription. This study elucidates the TGA2 dissociation mechanism by introducing protein kinase CK2 into this process. This enzyme efficiently phosphorylates TGA2 resulting in two crucial events. Firstly, the DNA-binding ability of this transcription factor is completely abolished explaining how the large TGA2 complexes are quickly evicted from the PR1 promoter. Secondly, a portion of TGA2 molecules dissociate from the complexes after phosphorylation which likely makes them available for the formation of the TGA2-NPR1 activating complex. We also show that phosphorylation of a multiserine motif found within TGA2’s N terminus is responsible for the change of affinity to DNA, while modification of a single threonine in the leucine zipper domain seems to be responsible for deoligomerization. Despite the substantial changes caused by phosphorylation, TGA2 is still capable of interacting with NPR1 and these proteins together form a complex on DNA promoting PR1 transcription. Therefore, we propose a change in the current model of how PR1 is regulated by adding CK2 which targets TGA2 displacing it’s complexes from the promoter and providing solitary TGA2 molecules for assembly of the activating complex. Amino acid sequences of regions targeted by CK2 in Arabidopsis TGA2 are similar to those found in TGA2 homologs in rice and tobacco. Therefore, the molecular mechanism that we have identified may be conserved among various plants, including important crop species, adding to the significance of our findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic Acquired Resistance (SAR) is a type of plant systemic resistance occurring against a broad spectrum of pathogens. It can be activated in response to pathogen infection in the model plant Arabidopsis thaliana and many agriculturally important crops. Upon SAR activation, the infected plant undergoes transcriptional reprogramming, marked by the induction of a battery of defense genes, including Pathogenesis-related (PR) genes. Activation of the PR-1 gene serves as a molecular marker for the deployment of SAR. The accumulation of a defense hormone, salicylic acid (SA) is crucial for the infected plant to mount SAR. Increased cellular levels of SA lead to the downstream activation of the PR-1 gene, triggered by the combined action of the Non-expressor of Pathogenesis-related Gene 1 (NPR1) protein and the TGA II-clade transcription factor (namely TGA2). Despite the importance of SA, its receptor has remained elusive for decades. In this study, we demonstrated that in Arabidopsis the NPR1 protein is a receptor for SA. SA physically binds to the C-terminal transactivation domain of NPR1. The two cysteines (Cys521 and Cys529), which are important for NPR1’s coactivator function, within this transactivation domain are critical for the binding of SA to NPR1. The interaction between SA and NPR1 requires a transition metal, copper, as a cofactor. Our results also suggested a conformational change in NPR1 upon SA binding, releasing the C-terminal transactivation domain from the N-terminal autoinhibitory BTB/POZ domain. These results advance our understanding of the plant immune function, specifically related to the molecular mechanisms underlying SAR. The discovery of NPR1 as a SA receptor enables future chemical screening for small molecules that activate plant immune responses through their interaction with NPR1 or NPR1-like proteins in commercially important plants. This will help in identifying the next generation of non-biocidal pesticides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trois protéines de la famille TRIM (Motif TRIpartite), TIF1α, β (Transcriptional Intermediary Factor 1) et PML (ProMyelocytic Leukaemia¬), font l’objet de cette étude. TIF1α est connu comme un coactivateur des récepteurs nucléaires et TIF1β comme le corépresseur universel des protéines KRAB-multidoigt de zinc dont le prototype étudié ici est ZNF74. PML possède divers rôles dont le plus caractérisé est celui d’être l’organisateur principal et essentiel des PML-NBs (PML-Nuclear Bodies), des macrostructures nucléaires très dynamiques regroupant et coordonnant plus de 40 protéines. Il est à noter que la fonction de TIF1α, β et PML est régulée par une modification post-traductionnelle, la sumoylation, qui implique le couplage covalent de la petite protéine SUMO (Small Ubiquitin like MOdifier) à des lysines de ces trois protéines cibles. Cette thèse propose de développer des méthodes utilisant le BRET (Bioluminescence Resonance Energy Transfert) afin de détecter dans des cellules vivantes et en temps réel des interactions non-covalentes de protéines nucléaires mais aussi leur couplage covalent à SUMO. En effet, le BRET n’a jamais été exploré jusqu’alors pour étudier les interactions non-covalentes et covalentes de protéines nucléaires. L’étude de l’interaction de protéines transcriptionnellement actives est parfois difficile par des méthodes classiques du fait de leur grande propension à agréger (famille TRIM) ou de leur association à la matrice nucléaire (ZNF74). L’homo et l’hétérodimérisation de TIF1α, β ainsi que leur interaction avec ZNF74 sont ici testées sur des protéines entières dans des cellules vivantes de mammifères répondant aux résultats conflictuels de la littérature et démontrant que le BRET peut être avantageusement utilisé comme alternative aux essais plus classiques basés sur la transcription. Du fait de l’hétérodimérisation confirmée de TIF1α et β, le premier article présenté ouvre la possibilité d’une relation étroite entre les récepteurs nucléaires et les protéines KRAB- multidoigt de zinc. Des études précédentes ont démontré que la sumoylation de PML est impliquée dans sa dégradation induite par l’As2O3 et dépendante de RNF4, une E3 ubiquitine ligase ayant pour substrat des chaînes de SUMO (polySUMO). Dans le second article, grâce au développement d’une nouvelle application du BRET pour la détection d’interactions covalentes et non-covalentes avec SUMO (BRETSUMO), nous établissons un nouveau lien entre la sumoylation de PML et sa dégradation. Nous confirmons que le recrutement de RNF4 dépend de SUMO mais démontrons également l’implication du SBD (Sumo Binding Domain) de PML dans sa dégradation induite par l’As2O3 et/ou RNF4. De plus, nous démontrons que des sérines, au sein du SBD de PML, qui sont connues comme des cibles de phosphorylation par la voie de la kinase CK2, régulent les interactions non-covalentes de ce SBD mettant en évidence, pour la première fois, que les interactions avec un SBD peuvent dépendre d’un évènement de phosphorylation (“SBD phospho-switch”). Nos résultats nous amènent à proposer l’hypothèse que le recrutement de PML sumoylé au niveau des PML-NBs via son SBD, favorise le recrutement d’une autre activité E3 ubiquitine ligase, outre celle de RNF4, PML étant lui-même un potentiel candidat. Ceci suggère l’existence d’une nouvelle relation dynamique entre phosphorylation, sumoylation et ubiquitination de PML. Finalement, il est suggéré que PML est dégradé par deux voies différentes dépendantes de l’ubiquitine et du protéasome; la voie de CK2 et la voie de RNF4. Enfin une étude sur la sumoylation de TIF1β est également présentée en annexe. Cette étude caractérise les 6 lysines cibles de SUMO sur TIF1β et démontre que la sumoylation est nécessaire à l’activité répressive de TIF1β mais n’est pas impliquée dans son homodimérisation ou son interaction avec la boîte KRAB. La sumoylation est cependant nécessaire au recrutement d’histones déacétylases, dépendante de son homodimérisation et de l’intégrité du domaine PHD. Alors que l’on ne connaît pas de régulateur physiologique de la sumoylation outre les enzymes directement impliquées dans la machinerie de sumoylation, nous mettons en évidence que la sumoylation de TIF1β est positivement régulée par son interaction avec le domaine KRAB et suggérons que ces facteurs transcriptionnels recrutent TIF1β à l’ADN au niveau de promoteur et augmentent son activité répressive en favorisant sa sumoylation.