956 resultados para FACTOR-BINDING PROTEIN-1
Resumo:
During the development and testing of a radioreceptor assay (RRA) for human IL-1, we have detected and identified the presence of auto-antibodies to IL-1 in normal human plasma (NHP). The RRA is based on the competition between human 125I-labeled rIL-1 alpha and standard or unknown quantities of IL-1 alpha or IL-1 beta for binding to a limited amounts of IL-1 receptor (IL-1R) isolated from the EL4 mouse thymoma cell line. NHP from 20 out of 100 unselected blood donors were found to completely inhibit the binding of 125I-labeled IL-1 alpha to its receptor, suggesting the presence in these NHP samples of either abnormal amounts of IL-1 or of a factor binding to the 125I-labeled IL-1 alpha. Special care was taken to ascertain that the inhibitory factors were antibodies and not soluble IL-1 receptor antagonist. When plasma samples with inhibiting activity were incubated with labeled IL-1 alpha and chromatographed on a Sephadex G200 column, they were found to contain 125I-labeled complexes with an apparent molecular weight of 150-200kD. The IL-1 binding factor could be eliminated from plasma by incubation with protein A-Sepharose, suggesting that it consisted in IgG antibodies directed against IL-1. Furthermore, the antibody nature of the inhibiting factor was confirmed by its binding to purified rIL-1 coupled to Sepharose. Screening of 200 NHP samples by incubation with 100 pg of 125I-labeled IL-1 followed by precipitation with 12% of polyethylene glycol (PEG) confirmed that about 25% of NHP contain detectable IgG antibodies to IL-1 alpha, while only 2% of NHP contain antibodies to IL-1 beta. No correlation between the presence of these anti-IL-1 antibodies and any particular major histocompatibility complex or any pathological conditions was detected. We suggest that all serum samples assayed for IL-1 alpha or IL-1 beta content should be pretested with the PEG precipitation assay described here.
Resumo:
v-E10, a caspase recruitment domain (CARD)-containing gene product of equine herpesvirus 2, is the viral homologue of the bcl-10 protein whose gene was found to be translocated in mucosa-associated lymphoid tissue (MALT) lymphomas. v-E10 efficiently activates the c-jun NH(2)-terminal kinase (JNK), p38 stress kinase, and the nuclear factor (NF)-kappaB transcriptional pathway and interacts with its cellular homologue, bcl-10, via a CARD-mediated interaction. Here we demonstrate that v-E10 contains a COOH-terminal geranylgeranylation consensus site which is responsible for its plasma membrane localization. Expression of v-E10 induces hyperphosphorylation and redistribution of bcl-10 from the cytoplasm to the plasma membrane, a process which is dependent on the intactness of the v-E10 CARD motif. Both membrane localization and a functional CARD motif are important for v-E10-mediated NF-kappaB induction, but not for JNK activation, which instead requires a functional v-E10 binding site for tumor necrosis factor receptor-associated factor (TRAF)6. Moreover, v-E10-induced NF-kappaB activation is inhibited by a dominant negative version of the bcl-10 binding protein TRAF1, suggesting that v-E10-induced membrane recruitment of cellular bcl-10 induces constitutive TRAF-mediated NF-kappaB activation.
Resumo:
Our current knowledge of the general factor requirement in transcription by the three mammalian RNA polymerases is based on a small number of model promoters. Here, we present a comprehensive chromatin immunoprecipitation (ChIP)-on-chip analysis for 28 transcription factors on a large set of known and novel TATA-binding protein (TBP)-binding sites experimentally identified via ChIP cloning. A large fraction of identified TBP-binding sites is located in introns or lacks a gene/mRNA annotation and is found to direct transcription. Integrated analysis of the ChIP-on-chip data and functional studies revealed that TAF12 hitherto regarded as RNA polymerase II (RNAP II)-specific was found to be also involved in RNAP I transcription. Distinct profiles for general transcription factors and TAF-containing complexes were uncovered for RNAP II promoters located in CpG and non-CpG islands suggesting distinct transcription initiation pathways. Our study broadens the spectrum of general transcription factor function and uncovers a plethora of novel, functional TBP-binding sites in the human genome.
Resumo:
The epidermal growth factor receptor (EGFR) is a member of the tyrosine kinase receptor family involved in signal transduction and the regulation of cellular proliferation and differentiation. It is also a calmodulin-binding protein. To examine the role of calmodulin in the regulation of EGFR, the effect of calmodulin antagonist, W-13, on the intracellular trafficking of EGFR and the MAPK signaling pathway was analyzed. W-13 did not alter the internalization of EGFR but inhibited its recycling and degradation, thus causing the accumulation of EGF and EGFR in enlarged early endosomal structures. In addition, we demonstrated that W-13 stimulated the tyrosine phosphorylation of EGFR and consequent recruitment of Shc adaptor protein with EGFR, presumably through inhibition of the calmodulin-dependent protein kinase II (CaM kinase II). W-13¿mediated EGFR phosphorylation was blocked by metalloprotease inhibitor, BB94, indicating a possible involvement of shedding in this process. However, MAPK activity was decreased by W-13; dissection of this signaling pathway showed that W-13 specifically interferes with Raf-1 activity. These data are consistent with the regulation of EGFR by calmodulin at several steps of the receptor signaling and trafficking pathways.
Resumo:
PURPOSE: To analyze in vivo the function of chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C (gene symbol: Cspg5) during retinal degeneration in the Rpe65⁻/⁻ mouse model of Leber congenital amaurosis. METHODS: We resorted to mice with targeted deletions in the Cspg5 and retinal pigment epithelium protein of 65 kDa (Rpe65) genes (Cspg5⁻/⁻/Rpe65⁻/⁻). Cone degeneration was assessed with cone-specific peanut agglutinin staining. Transcriptional expression of rhodopsin (Rho), S-opsin (Opn1sw), M-opsin (Opn1mw), rod transducin α subunit (Gnat1), and cone transducin α subunit (Gnat2) genes was assessed with quantitative PCR from 2 weeks to 12 months. The retinal pigment epithelium (RPE) was analyzed at P14 with immunodetection of the retinol-binding protein membrane receptor Stra6. RESULTS: No differences in the progression of retinal degeneration were observed between the Rpe65⁻/⁻ and Cspg5⁻/⁻/Rpe65⁻/⁻ mice. No retinal phenotype was detected in the late postnatal and adult Cspg5⁻/⁻ mice, when compared to the wild-type mice. CONCLUSIONS: Despite the previously reported upregulation of Cspg5 during retinal degeneration in Rpe65⁻/⁻ mice, no protective effect or any involvement of Cspg5 in disease progression was identified.
Resumo:
TLR4 (Toll-like receptor 4) is essential for sensing the endotoxin of Gram-negative bacteria. Mutations or deletion of the TLR4 gene in humans or mice have been associated with altered predisposition to or outcome of Gram-negative sepsis. In the present work, we studied the expression and regulation of the Tlr4 gene of mouse. In vivo, TLR4 levels were higher in macrophages compared with B, T or natural killer cells. High basal TLR4 promoter activity was observed in RAW 264.7, J774 and P388D1 macrophages transfected with a TLR4 promoter reporter vector. Analysis of truncated and mutated promoter constructs identified several positive [two Ets (E twenty-six) and one AP-1 (activator protein-1) sites] and negative (a GATA-like site and an octamer site) regulatory elements within 350 bp upstream of the transcriptional start site. The myeloid and B-cell-specific transcription factor PU.1 bound to the proximal Ets site. In contrast, none among PU.1, Ets-1, Ets-2 and Elk-1, but possibly one member of the ESE (epithelium-specific Ets) subfamily of Ets transcription factors, bound to the distal Ets site, which was indispensable for Tlr4 gene transcription. Endotoxin did not affect macrophage TLR4 promoter activity, but it decreased TLR4 steady-state mRNA levels by increasing the turnover of TLR4 transcripts. TLR4 expression was modestly altered by other pro- and anti-inflammatory stimuli, except for PMA plus ionomycin which strongly increased promoter activity and TLR4 mRNA levels. The mouse and human TLR4 genes were highly conserved. Yet, notable differences exist with respect to the elements implicated in gene regulation, which may account for species differences in terms of tissue expression and modulation by microbial and inflammatory stimuli.
Resumo:
In the eukaryotic cell cycle, there are major control points in late G2 to determine the timing of the initiation of mitosis, and in late G1, regulating entry into S phase. In yeasts, this latter control is called start. Traverse of the start control and progression to S phase is accompanied by an increase in the expression of some of the genes whose products are required for DNA synthesis. In Saccharomyces cerevisiae, the coordinate expression of these genes in late G1 is dependent on a cis-acting sequence element called the MluI cell cycle box (MCB). A transcription factor called DSC-1 binds these elements and mediates cell cycle regulated transcription, though it is unclear whether this is by cell cycle-dependent changes in its activity. A DSC-1-like factor has also been identified in the fission yeast S.pombe. This is composed of at least the products of the cdc10 and sct1/res1 genes, and binds to the promoters of genes whose expression increases prior to S phase. We demonstrate that p85cdc10 is a nuclear protein and that the activity of the S.pombe DSC-1 factor varies through the cell cycle; it is high in cells that have passed start, decreases at the time of anaphase, remains low during the pre-start phase of G1 and increases at the time of the next S phase. We also show that the reactivation in late G1 is dependent on the G1 form of p34cdc2.
Resumo:
BACKGROUND: Mood disorders are polygenic disorders in which the alteration of several susceptibility genes results in dysfunctional mood regulation. However, the molecular mechanisms underlying their transcriptional dysregulation are still unclear. The transcription factor cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) have been implicated in rodent models of depression. We previously provided evidence that Bdnf expression critically rely on a potent CREB coactivator called CREB-regulated transcription coactivator 1 (CRTC1). METHODS: To further evaluate the role of CRTC1 in the brain, we generated a knockout mouse line and analyzed its behavioral and molecular phenotype. RESULTS: We found that mice lacking CRTC1 associate neurobehavioral endophenotypes related to mood disorders. Crtc1(-/-) mice exhibit impulsive aggressiveness, social withdrawal, and decreased sexual motivation, together with increased behavioral despair, anhedonia, and anxiety-related behavior in the novelty-induced hypophagia test. They also present psychomotor retardation as well as increased emotional response to stressful events. Crtc1(-/-) mice have a blunted response to the antidepressant fluoxetine in behavioral despair paradigms, whereas fluoxetine normalizes their aggressiveness and their behavioral response in the novelty-induced hypophagia test. Crtc1(-/-) mice strikingly show, in addition to a reduced dopamine and serotonin turnover in the prefrontal cortex, a concomitant decreased expression of several susceptibility genes involved in neuroplasticity, including Bdnf, its receptor TrkB, the nuclear receptors Nr4a1-3, and several other CREB-regulated genes. CONCLUSIONS: Collectively, these findings support a role for the CRTC1-CREB pathway in mood disorders etiology and behavioral response to antidepressants and identify CRTC1 as an essential coactivator of genes involved in mood regulation.
Resumo:
Accurate prediction of transcription factor binding sites is needed to unravel the function and regulation of genes discovered in genome sequencing projects. To evaluate current computer prediction tools, we have begun a systematic study of the sequence-specific DNA-binding of a transcription factor belonging to the CTF/NFI family. Using a systematic collection of rationally designed oligonucleotides combined with an in vitro DNA binding assay, we found that the sequence specificity of this protein cannot be represented by a simple consensus sequence or weight matrix. For instance, CTF/NFI uses a flexible DNA binding mode that allows for variations of the binding site length. From the experimental data, we derived a novel prediction method using a generalised profile as a binding site predictor. Experimental evaluation of the generalised profile indicated that it accurately predicts the binding affinity of the transcription factor to natural or synthetic DNA sequences. Furthermore, the in vitro measured binding affinities of a subset of oligonucleotides were found to correlate with their transcriptional activities in transfected cells. The combined computational-experimental approach exemplified in this work thus resulted in an accurate prediction method for CTF/NFI binding sites potentially functioning as regulatory regions in vivo.
Resumo:
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates viral transcription through three 21-bp repeats located in the U3 region of the HTLV-1 long terminal repeat and called Tax-responsive elements (TxREs). Each TxRE contains nucleotide sequences corresponding to imperfect cyclic AMP response elements (CRE). In this study, we demonstrate that the bZIP transcriptional factor CREB-2 is able to bind in vitro to the TxREs and that CREB-2 binding to each of the 21-bp motifs is enhanced by Tax. We also demonstrate that Tax can weakly interact with CREB-2 bound to a cellular palindromic CRE motif such as that found in the somatostatin promoter. Mutagenesis of Tax and CREB-2 demonstrates that both N- and C-terminal domains of Tax and the C-terminal region of CREB-2 are required for direct interaction between the two proteins. In addition, the Tax mutant M47, defective for HTLV-1 activation, is unable to form in vitro a ternary complex with CREB-2 and TxRE. In agreement with recent results suggesting that Tax can recruit the coactivator CREB-binding protein (CBP) on the HTLV-1 promoter, we provide evidence that Tax, CREB-2, and CBP are capable of cooperating to stimulate viral transcription. Taken together, our data highlight the major role played by CREB-2 in Tax-mediated transactivation.
Resumo:
Interleukin-1 receptor (IL-1RI) is a master regulator of inflammation and innate immunity. When triggered by IL-1beta, IL-1RI aggregates with IL-1R-associated protein (IL-1RAcP) and forms a membrane proximal signalosome that potently activates downstream signaling cascades. IL-1beta also rapidly triggers endocytosis of IL-1RI. Although internalization of IL-1RI significantly impacts signaling, very little is known about trafficking of IL-1RI and therefore about precisely how endocytosis modulates the overall cellular response to IL-1beta. Upon internalization, activated receptors are often sorted through endosomes and delivered to lysosomes for degradation. This is a highly regulated process that requires ubiquitination of cargo proteins as well as protein-sorting complexes that specifically recognize ubiquitinated cargo. Here, we show that IL-1beta induces ubiquitination of IL-1RI and that via these attached ubiquitin groups, IL-1RI interacts with the ubiquitin-binding protein Tollip. By using an assay to follow trafficking of IL-1RI from the cell surface to late endosomes and lysosomes, we demonstrate that Tollip is required for sorting of IL-1RI at late endosomes. In Tollip-deficient cells and cells expressing only mutated Tollip (incapable of binding IL-1RI and ubiquitin), IL-1RI accumulates on late endosomes and is not efficiently degraded. Furthermore, we show that IL-1RI interacts with Tom1, an ubiquitin-, clathrin-, and Tollip-binding protein, and that Tom1 knockdown also results in the accumulation of IL-1RI at late endosomes. Our findings suggest that Tollip functions as an endosomal adaptor linking IL-1RI, via Tom1, to the endosomal degradation machinery.
Resumo:
Acquisition of a mature dendritic morphology is critical for neural information processing. In particular, hepatocyte growth factor (HGF) controls dendritic arborization during brain development. However, the cellular mechanisms underlying the effects of HGF on dendritic growth remain elusive. Here, we show that HGF increases dendritic length and branching of rat cortical neurons through activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Activation of MAPK by HGF leads to the rapid and transient phosphorylation of cAMP response element-binding protein (CREB), a key step necessary for the control of dendritic development by HGF. In addition to CREB phosphorylation, regulation of dendritic growth by HGF requires the interaction between CREB and CREB-regulated transcription coactivator 1 (CRTC1), as expression of a mutated form of CREB unable to bind CRTC1 completely abolished the effects of HGF on dendritic morphology. Treatment of cortical neurons with HGF in combination with brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family that regulates dendritic development via similar mechanisms, showed additive effects on MAPK activation, CREB phosphorylation and dendritic growth. Collectively, these results support the conclusion that regulation of cortical dendritic morphology by HGF is mediated by activation of the MAPK pathway, phosphorylation of CREB and interaction of CREB with CRTC1.
Resumo:
The flexibility of different regions of HIV-1 protease was examined by using a database consisting of 73 X-ray structures that differ in terms of sequence, ligands or both. The root-mean-square differences of the backbone for the set of structures were shown to have the same variation with residue number as those obtained from molecular dynamics simulations, normal mode analyses and X-ray B-factors. This supports the idea that observed structural changes provide a measure of the inherent flexibility of the protein, although specific interactions between the protease and the ligand play a secondary role. The results suggest that the potential energy surface of the HIV-1 protease is characterized by many local minima with small energetic differences, some of which are sampled by the different X-ray structures of the HIV-1 protease complexes. Interdomain correlated motions were calculated from the structural fluctuations and the results were also in agreement with molecular dynamics simulations and normal mode analyses. Implications of the results for the drug-resistance engendered by mutations are discussed briefly.
Resumo:
Expression control in synthetic genetic circuitry, for example, for construction of sensitive biosensors, is hampered by the lack of DNA parts that maintain ultralow background yet achieve high output upon signal integration by the cells. Here, we demonstrate how placement of auxiliary transcription factor binding sites within a regulatable promoter context can yield an important gain in signal-to-noise output ratios from prokaryotic biosensor circuits. As a proof of principle, we use the arsenite-responsive ArsR repressor protein from Escherichia coli and its cognate operator. Additional ArsR operators placed downstream of its target promoter can act as a transcription roadblock in a distance-dependent manner and reduce background expression of downstream-placed reporter genes. We show that the transcription roadblock functions both in cognate and heterologous promoter contexts. Secondary ArsR operators placed upstream of their promoter can also improve signal-to-noise output while maintaining effector dependency. Importantly, background control can be released through the addition of micromolar concentrations of arsenite. The ArsR-operator system thus provides a flexible system for additional gene expression control, which, given the extreme sensitivity to micrograms per liter effector concentrations, could be applicable in more general contexts.
Resumo:
Transcriptional coactivators and corepressors often have multiple targets and can have opposing actions on transcription and downstream physiological events. The coactivator peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α is under-expressed in Huntington's disease and is a regulator of antioxidant defenses and mitochondrial biogenesis. We show that in primary cortical neurons, expression of PGC-1α strongly promotes resistance to excitotoxic and oxidative stress in a cell autonomous manner, whereas knockdown increases sensitivity. In contrast, the transcriptional corepressor silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) specifically antagonizes PGC-1α-mediated antioxidant effects. The antagonistic balance between PGC-1α and SMRT is upset in favor of PGC-1α by synaptic activity. Synaptic activity triggers nuclear export of SMRT reliant on multiple regions of the protein. Concommitantly, synaptic activity post-translationally enhances the transactivating potential of PGC-1α in a p38-dependent manner, as well as upregulating cyclic-AMP response element binding protein-dependent PGC-1α transcription. Activity-dependent targeting of PGC-1α results in enhanced gene expression mediated by the thyroid hormone receptor, a prototypical transcription factor coactivated by PGC-1α and repressed by SMRT. As a consequence of these events, SMRT is unable to antagonize PGC-1α-mediated resistance to oxidative stress in synaptically active neurons. Thus, PGC-1α and SMRT are antagonistic regulators of neuronal vulnerability to oxidative stress. Further, this coactivatorcorepressor antagonism is regulated by the activity status of the cell, with implications for neuronal viability.