921 resultados para Expansion (Heat)
Resumo:
To find the range of pressure required for effective high-pressure inactivation of bacterial spores and to investigate the role of alpha/beta-type small, acid-soluble proteins (SASP) in spores under pressure treatment, mild heat was combined with pressure (room temperature to 65 degrees C and 100 to 500 MPa) and applied to wild-type and SASP-alpha(-/)beta(-) Bacillus subtilis spores. On the one hand, more than 4 log units of wild-type spores were reduced after pressurization at 100 to 500 MPa and 65 degrees C, On the other hand, the number of surviving mutant spores decreased by 2 log units at 100 MPa and by more than 5 log units at 500 MPa. At 500 MPa and 65 degrees C, both wild-type and mutant spore survivor counts were reduced by 5 log units. Interestingly, pressures of 100, 200, and 300 MPa at 65 degrees C inactivated wild-type SASP-alpha(+)/beta(+) spores more than mutant SASP-alpha(-)/beta(-) spores, and this was attributed to less pressure-induced germination in SASP-alpha(-)/beta(-) spores than in wild-type SASP-alpha(+)/beta(+) spores. However, there was no difference in the pressure resistance between SASP-alpha(+)/beta(+) and SASP-alpha(-)/beta(-) spores at 100 MPa and ambient temperature (approximately 22 degrees C) for 30 min. A combination of high pressure and high temperature is very effective for inducing spore germination, and then inactivation of the germinated spore occurs because of the heat treatment. This study showed that alpha/beta-type SASP play a role in spore inactivation by increasing spore germination under 100 to 300 MPa at high temperature.
Resumo:
Green malt was kilned at 95 degrees C following two regimens: a standard regimen (SKR) and a rapid regimen (RKR). Both resulting malts were treated further in a tray dryer heated to 120 degrees C, as was green malt previously dried to 65 degrees C (TDR). Each regimen was monitored by determining the color, antioxidant activity (by both ABTS(center dot+) and FRAP methods), and polyphenolic profile. SKR and RKR malts exhibited decreased L* and increased b* values above approximately 80 degrees C. TDR malts changed significantly less, and color did not develop until 110 degrees C, implying that different chemical reactions lead to color in those malts. Antioxidant activity increased progressively with each regimen, although with TDR malts this became significant only at 110-120 degrees C. The RKR malt ABTS(center dot+) values were higher than those of the SKR malt. The main phenolics, that is, ferulic, p-coumaric, and vanillic acids, were monitored throughout heating. Ferulic acid levels increased upon heating to 80 degrees C for SKR and to 70 degrees C for RKR, with subsequent decreases. However, the levels for TDR malts did not increase significantly. The increase in free phenolics early in kilning could be due to enzymatic release of bound phenolics and/or easier extractability due to changes in the matrix. The differences between the kilning regimens used suggest that further modification of the regimens could lead to greater release of bound phenolics with consequent beneficial effects on flavor stability in beer and, more generally, on human health.
Interaction of heat-moisture conditions and physical properties in oat processing: II. Flake quality
Resumo:
Product quality is an important determinant of consumer acceptance. Consistent oat flake properties are thus necessary in the mill as well as in the marketplace. The effects of kilning and tempering conditions (30, 60 or 90 min at 80, 95 or 110 degrees C) on flake peroxidase activity, size, thickness, strength and water absorption were therefore determined. After kilning, some peroxidase activity remained but steaming and tempering effectively destroyed the activity of these enzymes. Thus the supposed protective effect of kilning or groat durability was not confirmed. Kilning resulted in an increase in flake specific weight, but no other significant effect on flake quality was observed. Tempering time and temperature interacted significantly to produce complex effects on flake specific weight, thickness and water absorption. Flake thickness and specific weight were significantly correlated (r = 0.808, n = 54). Longer tempering times resulted in an increased fines' fraction, from 1.45% at 30 min to 1.75% at 90 min. It is concluded that whilst kilning has little effect on flake quality, the heat treatment immediately prior to flaking, can be used to adjust flake quality independently of flake thickness.
Resumo:
Research interest in oats has focussed on their nutritional value, but there have been few studies of their food processing. Heat treatment is characteristic of oat processing, as it is needed to inactivate lipase and to facilitate flaking. A Texture Analyser was used to characterise the mechanical properties of unkilned and kilned oat groats after steaming and tempering in an oven for 30, 60 and 90 min at 80, 95 and 110 degrees C. Maximum force, number of peaks before maximum and final force after 5s hold were used to characterise the behaviour of the groats during compression. Kilned groats were larger and softer before steaming. After steaming and tempering, the moisture content of the kilned groats was higher than for unkilned groats. Hot, steamed oats were softer than cold, unsteamed groats, indicated by a decrease in maximum force from 59 to 55 N, and there was no significant difference between kilned and unkilned groats. However, higher temperatures during tempering increased maximum force. These results suggest that mild steam treatment yields softer oat groats, whereas cold or over-treated groats tend to be harder. (c) 2007 Elsevier Ltd. All rights reserved.
The effect of free Ca2+ on the heat stability and other characteristics of low-heat skim milk powder
Resumo:
Low-heat skim milk powder (SMP), reconstituted to 25% total solids, was found to have poor heat stability. This could be improved by reducing the free Ca2+ concentration to 1.14 mm, or lower, by the addition of either Amberlite IR-120 ion-exchange resin in its sodium form or tri-sodium citrate in skim milk prior to evaporation and spray drying. Reduction in Ca2+ concentration was accompanied by increases in pH, particle size, and kinematic viscosity, and by a reduction in zeta-potential and changes in colour. In-container sterilisation of the reconstituted powder increased particle size, zeta-potential, kinematic viscosity and a* and b* values. However. Ca2+ concentration, pH and whiteness decreased. This study elucidated the importance of Ca2+ concentration and pH on heat stability of low-heat SMP, suggesting that Ca2+ concentration and pH in bulk milk are useful indicators for ensuring that spray dried milk powder has good heat stability. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The incorporation of caseins and whey proteins into acid gels produced from unheated and heat treated skimmed milk was studied by confocal scanning laser microscopy (CSLM) using fluorescent labelled proteins. Bovine casein micelles were labelled using Alexa Fluor 594, while whey proteins were labelled using Alexa Fluor 488. Samples of the labelled protein solutions were introduced into aliquots of pasteurised skim milk, and skim milk heated to 90 degrees C for 2 min and 95 degrees C for 8 min. The milk was acidified at 40 degrees C to a final pH of 4.4 using 20 g gluconodelta-lactone/l (GDL). The formation of gels was observed with CSLM at two wavelengths (488 nm and 594 nm), and also by visual and rheological methods. In the control milk, as pH decreased distinct casein aggregates appeared, and as further pH reduction occurred, the whey proteins could be seen to coat the casein aggregates. With the heated milks, the gel structure was formed of continuous strands consisting of both casein and whey protein. The formation of the gel network was correlated with an increase in the elastic modulus for all three treatments, in relation to the severity of heat treatment. This model system allows the separate observation of the caseins and whey proteins, and the study of the interactions between the two protein fractions during the formation of the acid gel structure, on a real-time basis. The system could therefore be a valuable tool in the study of structure formation in yoghurt and other dairy protein systems.
Resumo:
Cationic swede and anionic turnip peroxidases were partially purified by ion-exchange and gel-filtration chromatography, respectively. Heat treatment of these enzymes and of a commercial high purity horseradish peroxidase (HRP) caused a loss of enzyme activity and a corresponding increase in linoleic acid hydroperoxide formation activity. The hydroperoxide levels in model systems increased only in the early stages of the oxidation reaction and then declined as degradation became more significant. The presence of a dialysed blend of cooked swede markedly lowered the hydroperoxide level formed. Analysis of volatile compounds formed showed that hexanal predominated in a buffer system and in a blend of cooked turnip. In dialysed blends of cooked swede, hexanol was the primary volatile compound generated. After inactivation under mild conditions in the presence of EDTA, the peroxidases showed hydroperoxide formation activity and patterns of volatile compounds from linoleic acid that were similar to those found on heat-inactivation. This suggested that calcium abstraction from the peroxidases was critical for the enhancement of lipid oxidation activity. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Differential thermal expansion over the range 90-210 K has been applied successfully to determine the crystal structure of chlorothiazide from synchrotron powder diffraction data using direct methods. Key to the success of the approach is the use of a multi-data-set Pawley refinement to extract a set of reflection intensities that is more 'single-crystal-like' than those extracted from a single data set. The improvement in reflection intensity estimates is quantified by comparison with reference single-crystal intensities. (C) 2008 International Union of Crystallography Printed in Singapore - all rights reserved
Resumo:
The behaviour of the lattice parameters of HTCuCN (high-temperature form), AgCN and AuCN have been investigated as a function of temperature over the temperature range 90–490 K. All materials show one-dimensional negative thermal expansion (NTE) along the ––(M––CN)–– chain direction c (ac(HT-CuCN) ¼32.1 10–6 K1, ac(AgCN)¼23.910–6 K1 and ac(AuCN) ¼9.3106 K1 over the temperature range 90–490 K). The origin of this behaviour has been studied using RMC modelling of Bragg and total neutron diffraction data from AgCN and AuCN at 10 and 300 K. These analyses yield details of the local motions within the chains responsible for NTE. The low-temperature form of CuCN, LT-CuCN, has been studied using single-crystal X-ray diffraction. In this form of CuCN, wavelike distortions of the ––(Cu––CN)–– chains occur in the static structure, which are reminiscent of the motions seen in the RMC modelling of AgCN and AuCN, which are responsible for the NTE behaviour.
Resumo:
Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting thatmost effectors represent species-specific adaptations.